• Title/Summary/Keyword: Adeno-associated virus

Search Result 18, Processing Time 0.024 seconds

Genetic Therapies for Duchenne Muscular Dystrophy and Beyond

  • Shin, Jin-Hong
    • Journal of Interdisciplinary Genomics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • Progressive weakness of skeletal muscle is the hallmark of muscular dystrophies. It is often accompanied by cardiomyopathy and respiratory insufficiency. It has generally been perceived as incurable diseases, while the advent of genetic therapy is changing the paradigm. Most research and achievements have been for the treatment of Duchenne muscular dystrophy, while it is promising to hope for therapies for other myopathies. Drugs for nonsense read-through and exon skipping are already approved for clinical use in Europe and the United States, respectively. Gene therapy using adeno-associated virus is in early phase of clinical trial. In this review, most promising genetic therapies will be briefly described.

Hyperkinetic Rat Model Induced by Optogenetic Parafascicular Nucleus Stimulation

  • Moonyoung Chung;Young Seok Park
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.2
    • /
    • pp.121-132
    • /
    • 2023
  • Objective : The parafascicular nucleus (PF) plays important roles in controlling the basal ganglia. It is not well known whether the PF affects the development of abnormal involuntary movements (AIMs). This study was aimed to find a role of the PF in development of AIMs using optogenetic methods in an animal model. Methods : Fourteen rats were underwent stereotactic operation, in which they were injected with an adeno-associated virus with channelrhodopsin (AAV2-hSyn-ChR2-mCherry) to the lateral one third of the PF. Behavior test was performed with and without optical stimulation 14 days after the injection of the virus. AIM of rat was examined using AIM score. After the behavior test, rat's brain was carefully extracted and the section was examined using a fluorescence microscope to confirm transfection of the PF. Results : Of the 14 rats, seven rats displayed evident involuntary abnormal movements. AIM scores were increased significantly after the stimulation compared to those at baseline. In rats with AIMs, mCherry expression was prominent in the PF, while the rats without AIM lacked with the mCherry expression. Conclusion : AIMs could be reversibly induced by stimulating the PF through an optogenetic method.

An Optimization of AAV-82Q-Delivered Rat Model of Huntington's Disease

  • So, Kyoung-Ha;Choi, Jai Ho;Islam, Jaisan;KC, Elina;Moon, Hyeong Cheol;Won, So Yoon;Kim, Hyong Kyu;Kim, Soochong;Hyun, Sang-Hwan;Park, Young Seok
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.5
    • /
    • pp.579-589
    • /
    • 2020
  • Objective : No optimum genetic rat Huntington model both neuropathological using an adeno-associated virus (AAV-2) vector vector has been reported to date. We investigated whether direct infection of an AAV2 encoding a fragment of mutant huntingtin (AV2-82Q) into the rat striatum was useful for optimizing the Huntington rat model. Methods : We prepared ten unilateral models by injecting AAV2-82Q into the right striatum, as well as ten bilateral models. In each group, five rats were assigned to either the 2×1012 genome copies (GC)/mL of AAV2-82Q (×1, low dose) or 2×1013 GC/mL of AAV2-82Q (×10, high dose) injection model. Ten unilateral and ten bilateral models injected with AAV-empty were also prepared as control groups. We performed cylinder and stepping tests 2, 4, 6, and 8 weeks after injection, tested EM48 positive mutant huntingtin aggregates. Results : The high dose of unilateral and bilateral AAV2-82Q model showed a greater decrease in performance on the stepping and cylinder tests. We also observed more prominent EM48-positive mutant huntingtin aggregates in the medium spiny neurons of the high dose of AAV2-82Q injected group. Conclusion : Based on the results from the present study, high dose of AAV2-82Q is the optimum titer for establishing a Huntington rat model. Delivery of high dose of human AAV2-82Q resulted in the manifestation of Huntington behaviors and optimum expression of the huntingtin protein in vivo.

Functional Expression of the Internal Rotenone-Insensitive NADH-Quinone Oxidoreductase (NDI1) Gene of Saccharomyces cerevisiae in Human HeLa Cells

  • Seo, Byoung-Boo
    • Journal of Embryo Transfer
    • /
    • v.25 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • Many studies propose that dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I) is associated with neurodegenerative disorders, such as Parkinson's disease and Huntington's disease. Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. With a recombinant adeno-associated virus vector carrying the NDI1 gene (rAAV-NDI1) as the gene delivery method, we were able to attain high transduction efficiencies even in the human epithelial cervical cancer cells that are difficult to transfect by lipofection or calcium phosphate precipitation methods. Using a rAAV-NDI1, we demonstrated that the Ndi1 enzyme is successfully expressed in HeLa cells. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced HeLa cells were not affected by rotenone which is inhibitor of complex I, but was inhibited by flavone and antimycin A. The NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. In particular, in the NDI1-transduced cells, the yeast enzyme becomes integrated into the human respiratory chain. It is concluded that the NDI1 gene provides a potentially useful tool for gene therapy of mitochondrial diseases caused by complex I deficiency.

Functional Expression of Saccharomyces cerevisiae NADH-quinone Oxidoreductase (NDI1) Gene in the AML12 Mouse Liver Hepatocytes for the Applying Embryonic Stem Cell

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.427-434
    • /
    • 2011
  • Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber's hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.

Inhibition of HBV replication and gene expression in vitro and in vivo with a single AAV vector delivering two shRNA molecules

  • Li, Zhi;He, Ming-Liang;Yao, Hong;Dong, Qing-Ming;Chen, Yang-Chao;Chan, Chu-Yan;Zheng, Bo-Jian;Yuen, Kwok-Yung;Peng, Ying;Sun, Qiang;Yang, Xiao;Lin, Marie C.;Sung, Joseph J.Y.;Kung, Hsiang-Fu
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.59-64
    • /
    • 2009
  • Hepatitis B virus (HBV) infection is highly prevalent worldwide. The major challenge for current antiviral treatment is the elevated drug resistance that occurs via rapid viral mutagenesis. In this study, we developed AAV vectors to simultaneously deliver two or three shRNAs targeting different HBV-related genes. These vectors showed markedly better antiviral effects than ones that delivered a single shRNA in vitro. A dual shRNA expression vector (AAV-157i/1694i), which simultaneously expressed two shRNAs targeted the S and X genes of HBV, reduced HBsAg, HBeAg and HBV DNA levels by $87{\pm}4$, $80.3{\pm}2.6$ and $86.2{\pm}7%$ respectively, eight days post-transduction. In a mouse model of prophylactic treatment, HBsAg and HBeAg were reduced to undetectable levels and the serum HBV DNA level was reduced by at least 100 fold. These results indicate that AAV-157i/1694i generates potent anti-HBV effects and that the strategy of constructing multi-shRNA expression vectors may lead to enhanced anti-HBV efficacy and overcome the evading mechanism of the virus and thus the development of drug resistance.

A Cancer-specific Promoter for Gene Therapy of Lung Cancer, Protein Regulator of Cytokinesis 1 (PRC1) (폐암의 유전자 치료법을 위한 암특이적인 PRC1 프로모터)

  • Cho, Young-Hwa;Yun, Hye-Jin;Kwon, Hee-Chung;Kim, Hee-Jong;Cho, Sung-Ha;Kang, Bong-Su;Kim, Yeun-Ju;Seol, Won-Gi;Park, Kee-Rang
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1395-1399
    • /
    • 2008
  • We have recently reported the PRC1 promoter as a promoter candidate to control expression of transcriptionally targeted genes for breast cancer gene therapy. We tested whether the PRC1 promoter could be also applied for the lung cancer gene therapy. In the transient transfection assay with naked plasmids containing the luciferase fused to the PRC1 promoter, the promoter showed little activity in the normal lung cell line, MRC5. However, in the lung cancer A549 cells, PRC1 showed approximately 30-fold activation which was similar to the survivin promoter, the gene whose promoter has been already reportedas a candidate for the gene therapy of lung cancer. In viral systems, the PRC1 promoter showed approximately 75% and 66% of transcriptional activity compared to the CMV promoter in the adeno-associated virus (AAV) and the adenovirus (AV) systems, respectively. However, the PRC1 promoter in either AAV or AV showed approximately 20% activity compared to the CMV promoter in the normal lung cells. In addition, human lung tumor xenograft mice showed that the PRC1 promoter activity was as strong as the CMV activity in vivo. Taken together, these results suggested that PRC1 might be a potential promoter candidate for transcriptionally targeted lung cancer gene therapy.

Reconstructed Adeno-Associated Virus with the Extracellular Domain of Murine PD-1 Induces Antitumor Immunity

  • Elhag, Osama A.O.;Hu, Xiao-Jing;Wen-Ying, Zhang;Li, Xiong;Yuan, Yong-Ze;Deng, Ling-Feng;Liu, De-Li;Liu, Ying-Le;Hui, Geng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4031-4036
    • /
    • 2012
  • Background: The negative signaling provided by interactions of the co-inhibitory molecule, programmed death-1 (PD-1), and its ligands, B7-H1 (PD-L1) and B7-DC (PD-L2), is a critical mechanism contributing to tumor evasion; blockade of this pathway has been proven to enhance cytotoxic activity and mediate antitumor therapy. Here we evaluated the anti-tumor efficacy of AAV-mediated delivery of the extracellular domain of murine PD-1 (sPD-1) to a tumor site. Material and Methods: An rAAV vector was constructed in which the expression of sPD-1, a known negative regulator of TCR signals, is driven by human cytomegalovirus immediate early promoter (CMV-P), using a triple plasmid transfection system. Tumor-bearing mice were then treated with the AAV/sPD1 construct and expression of sPD-1 in tumor tissues was determined by semi quantitative RT-PCR, and tumor weights and cytotoxic activity of splenocytes were measured. Results: Analysis of tumor homogenates revealed sPD-1 mRNA to be significantly overexpressed in rAAV/sPD-1 treated mice as compared with control levels. Its use for local gene therapy at the inoculation site of H22 hepatoma cells could inhibit tumor growth, also enhancing lysis of tumor cells by lymphocytes stimulated specifically with an antigen. In addition, PD-1 was also found expressed on the surfaces of activated CD8+ T cells. Conclusion: This study confirmed that expression of the soluble extracellular domain of PD-1 molecule could reduce tumor microenvironment inhibitory effects on T cells and enhance cytotoxicity. This suggests that it might be a potential target for development of therapies to augment T-cell responses in patients with malignancies.