DOI QR코드

DOI QR Code

Hyperkinetic Rat Model Induced by Optogenetic Parafascicular Nucleus Stimulation

  • Moonyoung Chung (Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University) ;
  • Young Seok Park (Department of Neurosurgery, Chungbuk National University Hospital)
  • Received : 2022.05.11
  • Accepted : 2022.10.11
  • Published : 2023.03.01

Abstract

Objective : The parafascicular nucleus (PF) plays important roles in controlling the basal ganglia. It is not well known whether the PF affects the development of abnormal involuntary movements (AIMs). This study was aimed to find a role of the PF in development of AIMs using optogenetic methods in an animal model. Methods : Fourteen rats were underwent stereotactic operation, in which they were injected with an adeno-associated virus with channelrhodopsin (AAV2-hSyn-ChR2-mCherry) to the lateral one third of the PF. Behavior test was performed with and without optical stimulation 14 days after the injection of the virus. AIM of rat was examined using AIM score. After the behavior test, rat's brain was carefully extracted and the section was examined using a fluorescence microscope to confirm transfection of the PF. Results : Of the 14 rats, seven rats displayed evident involuntary abnormal movements. AIM scores were increased significantly after the stimulation compared to those at baseline. In rats with AIMs, mCherry expression was prominent in the PF, while the rats without AIM lacked with the mCherry expression. Conclusion : AIMs could be reversibly induced by stimulating the PF through an optogenetic method.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant, funded by the Korean Ministry of Science and ICT (NRF-2019R1G1A1100439). This work was also supported by the Soonchunhyang University Research Fund. This work is a reuse of part of a thesis; Moonyoung Chung, August 2021, 'Optogenetic parafascicular nucleus Stimulation Induced Hyperkinetic Rat Model', PhD thesis, Chungbuk National University, Cheongju, Korea.

References

  1. Altenmuller E, Baur V, Hofmann A, Lim VK, Jabusch HC : Musician's cramp as manifestation of maladaptive brain plasticity: arguments from instrumental differences. Ann N Y Acad Sci 1252 : 259-265, 2012 https://doi.org/10.1111/j.1749-6632.2012.06456.x
  2. Barow E, Neumann WJ, Brucke C, Huebl J, Horn A, Brown P, et al. : Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements. Brain 137 : 3012-3024, 2014 https://doi.org/10.1093/brain/awu258
  3. Dang MT, Yokoi F, McNaught KS, Jengelley TA, Jackson T, Li J, et al. : Generation and characterization of Dyt1 DeltaGAG knock-in mouse as a model for early-onset dystonia. Exp Neurol 196 : 452-463, 2005 https://doi.org/10.1016/j.expneurol.2005.08.025
  4. de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, et al. : Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A 110 : 4780-4785, 2013 https://doi.org/10.1073/pnas.1214546110
  5. DeLong MR : Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13 : 281-285, 1990 https://doi.org/10.1016/0166-2236(90)90110-V
  6. Fama R, Sullivan EV : Thalamic structures and associated cognitive functions: relations with age and aging. Neurosci Biobehav Rev 54 : 29-37, 2015 https://doi.org/10.1016/j.neubiorev.2015.03.008
  7. Ferbinteanu J : Memory systems 2018 - towards a new paradigm. Neurobiol Learn Mem 157 : 61-78, 2019 https://doi.org/10.1016/j.nlm.2018.11.005
  8. French JD, Verzeano M, Magoun HW : An extralemniscal sensory system in the brain. AMA Arch Neurol Psychiatry 69 : 505-518, 1953 https://doi.org/10.1001/archneurpsyc.1953.02320280093009
  9. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K : Optical deconstruction of parkinsonian neural circuitry. Science 324 : 354-359, 2009 https://doi.org/10.1126/science.1167093
  10. Huh R, Chung M : Range of voluntary neck motility predicts outcome of pallidal DBS for cervical dystonia. Acta Neurochir (Wien) 161 : 2491- 2498, 2019 https://doi.org/10.1007/s00701-019-04076-z
  11. Huh R, Song IU, Chung M : Neuropsychological consequences of pallidal deep brain stimulation altering brain networks. J Clin Neurosci 54 : 50-56, 2018 https://doi.org/10.1016/j.jocn.2018.05.004
  12. Ilyas A, Pizarro D, Romeo AK, Riley KO, Pati S : The centromedian nucleus: anatomy, physiology, and clinical implications. J Clin Neurosci 63 : 1-7, 2019 https://doi.org/10.1016/j.jocn.2019.01.050
  13. Jouve L, Salin P, Melon C, Kerkerian-Le Goff L : Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson's disease. J Neurosci 30 : 9919-9928, 2010 https://doi.org/10.1523/JNEUROSCI.1404-10.2010
  14. Koechlin E : Prefrontal executive function and adaptive behavior in complex environments. Curr Opin Neurobiol 37 : 1-6, 2016 https://doi.org/10.1016/j.conb.2015.11.004
  15. Krauss JK : Surgical treatment of dystonia. Eur J Neurol 17 : 97-101, 2010 https://doi.org/10.1111/j.1468-1331.2010.03059.x
  16. Kulkarni SK, Dhir A : Animal models of tardive dyskinesia. Int Rev Neurobiol 98 : 265-287, 2011 https://doi.org/10.1016/B978-0-12-381328-2.00011-0
  17. LaLumiere RT : A new technique for controlling the brain: optogenetics and its potential for use in research and the clinic. Brain Stimul 4 : 1-6, 2011 https://doi.org/10.1016/j.brs.2010.09.009
  18. Mandelbaum G, Taranda J, Haynes TM, Hochbaum DR, Huang KW, Hyun M, et al. : Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron 102 : 636-652.e7, 2019 https://doi.org/10.1016/j.neuron.2019.02.035
  19. Mazzone P, Stocchi F, Galati S, Insola A, Altibrandi MG, Modugno N, et al. : Bilateral implantation of centromedian-parafascicularis complex and GPi: a new combination of unconventional targets for deep brain stimulation in severe Parkinson disease. Neuromodulation 9 : 221-228, 2006 https://doi.org/10.1111/j.1525-1403.2006.00063.x
  20. McCairn KW, Iriki A, Isoda M : Deep brain stimulation reduces Tic-related neural activity via temporal locking with stimulus pulses. J Neurosci 33 : 6581-6593, 2013 https://doi.org/10.1523/JNEUROSCI.4874-12.2013
  21. Meringolo M, Tassone A, Imbriani P, Ponterio G, Pisani A : Dystonia: are animal models relevant in therapeutics? Rev Neurol (Paris) 174 : 608-614, 2018 https://doi.org/10.1016/j.neurol.2018.07.003
  22. Miller EK, Cohen JD : An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24 : 167-202, 2001 https://doi.org/10.1146/annurev.neuro.24.1.167
  23. Mitchell AS, Sherman SM, Sommer MA, Mair RG, Vertes RP, Chudasama Y : Advances in understanding mechanisms of thalamic relays in cognition and behavior. J Neurosci 34 : 15340-15346, 2014 https://doi.org/10.1523/JNEUROSCI.3289-14.2014
  24. Parent A, Hazrati LN : Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20 : 91-127, 1995 https://doi.org/10.1016/0165-0173(94)00007-C
  25. Paxinos G, Charles W : The rat brain in stereotaxic coordinates, 6th ed. Amsterdam : Elsevier, 2007
  26. Penttinen AM, Suleymanova I, Albert K, Anttila J, Voutilainen MH, Airavaara M : Characterization of a new low-dose 6-hydroxydopamine model of Parkinson's disease in rat. J Neurosci Res 94 : 318-328, 2016 https://doi.org/10.1002/jnr.23708
  27. Prashanth LK, Fox S, Meissner WG : l-Dopa-induced dyskinesia-clinical presentation, genetics, and treatment. Int Rev Neurobiol 98 : 31-54, 2011 https://doi.org/10.1016/B978-0-12-381328-2.00002-X
  28. Quartarone A, Pisani A : Abnormal plasticity in dystonia: disruption of synaptic homeostasis. Neurobiol Dis 42 : 162-170, 2011 https://doi.org/10.1016/j.nbd.2010.12.011
  29. Rabinovici GD, Stephens ML, Possin KL : Executive dysfunction. Continuum (Minneap Minn) 21 : 646-659, 2015 https://doi.org/10.1212/01.CON.0000466658.05156.54
  30. Sadikot AF, Rymar VV : The primate centromedian-parafascicular complex: anatomical organization with a note on neuromodulation. Brain Res Bull 78 : 122-130, 2009 https://doi.org/10.1016/j.brainresbull.2008.09.016
  31. Schmahmann JD, Pandya DN : Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex 44 : 1037-1066, 2008 https://doi.org/10.1016/j.cortex.2008.04.004
  32. Sewards TV, Sewards MA : The medial pain system: neural representations of the motivational aspect of pain. Brain Res Bull 59 : 163-180, 2002 https://doi.org/10.1016/S0361-9230(02)00864-X
  33. Sidibe M, Pare JF, Smith Y : Nigral and pallidal inputs to functionally segregated thalamostriatal neurons in the centromedian/parafascicular intralaminar nuclear complex in monkey. J Comp Neurol 447 : 286- 299, 2002 https://doi.org/10.1002/cne.10247
  34. Smith Y, Raju DV, Pare JF, Sidibe M : The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27 : 520-527, 2004 https://doi.org/10.1016/j.tins.2004.07.004
  35. Tanimura A, Du Y, Kondapalli J, Wokosin DL, Surmeier DJ : Cholinergic interneurons amplify thalamostriatal excitation of striatal indirect pathway neurons in Parkinson's disease models. Neuron 101 : 444-458.e6, 2019 https://doi.org/10.1016/j.neuron.2018.12.004
  36. Tronci E, Shin E, Bjorklund A, Carta M : Amphetamine-induced rotation and L-DOPA-induced dyskinesia in the rat 6-OHDA model: a correlation study. Neurosci Res 73 : 168-172, 2012 https://doi.org/10.1016/j.neures.2012.03.004
  37. Varela C : Thalamic neuromodulation and its implications for executive networks. Front Neural Circuits 8 : 69, 2014
  38. Vidailhet M, Grabli D, Roze E : Pathophysiology of dystonia. Curr Opin Neurol 22 : 406-413, 2009 https://doi.org/10.1097/WCO.0b013e32832d9ef3
  39. Vidailhet M, Vercueil L, Houeto JL, Krystkowiak P, Benabid AL, Cornu P, et al. : Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 352 : 459-467, 2005 https://doi.org/10.1056/NEJMoa042187
  40. Weigel R, Krauss JK : Center median-parafascicular complex and pain control. review from a neurosurgical perspective. Stereotact Funct Neurosurg 82 : 115-126, 2004 https://doi.org/10.1159/000079843
  41. Winkler C, Kirik D, Bjorklund A, Cenci MA : L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson's disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10 : 165-186, 2002 https://doi.org/10.1006/nbdi.2002.0499
  42. Wong YC, Luk K, Purtell K, Burke Nanni S, Stoessl AJ, Trudeau LE, et al. : Neuronal vulnerability in Parkinson disease: should the focus be on axons and synaptic terminals? Mov Disord 34 : 1406-1422, 2019 https://doi.org/10.1002/mds.27823