• 제목/요약/키워드: Address Recognition

검색결과 224건 처리시간 0.02초

Automatic Poster Generation System Using Protagonist Face Analysis

  • Yeonhwi You;Sungjung Yong;Hyogyeong Park;Seoyoung Lee;Il-Young Moon
    • Journal of information and communication convergence engineering
    • /
    • 제21권4호
    • /
    • pp.287-293
    • /
    • 2023
  • With the rapid development of domestic and international over-the-top markets, a large amount of video content is being created. As the volume of video content increases, consumers tend to increasingly check data concerning the videos before watching them. To address this demand, video summaries in the form of plot descriptions, thumbnails, posters, and other formats are provided to consumers. This study proposes an approach that automatically generates posters to effectively convey video content while reducing the cost of video summarization. In the automatic generation of posters, face recognition and clustering are used to gather and classify character data, and keyframes from the video are extracted to learn the overall atmosphere of the video. This study used the facial data of the characters and keyframes as training data and employed technologies such as DreamBooth, a text-to-image generation model, to automatically generate video posters. This process significantly reduces the time and cost of video-poster production.

A Comprehensive Study on Key Components of Grayscale-based Deepfake Detection

  • Seok Bin Son;Seong Hee Park;Youn Kyu Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2230-2252
    • /
    • 2024
  • Advances in deep learning technology have enabled the generation of more realistic deepfakes, which not only endanger individuals' identities but also exploit vulnerabilities in face recognition systems. The majority of existing deepfake detection methods have primarily focused on RGB-based analysis, offering unreliable performance in terms of detection accuracy and time. To address the issue, a grayscale-based deepfake detection method has recently been proposed. This method significantly reduces detection time while providing comparable accuracy to RGB-based methods. However, despite its significant effectiveness, the "key components" that directly affect the performance of grayscale-based deepfake detection have not been systematically analyzed. In this paper, we target three key components: RGB-to-grayscale conversion method, brightness level in grayscale, and resolution level in grayscale. To analyze their impacts on the performance of grayscale-based deepfake detection, we conducted comprehensive evaluations, including component-wise analysis and comparative analysis using real-world datasets. For each key component, we quantitatively analyzed its characteristics' performance and identified differences between them. Moreover, we successfully verified the effectiveness of an optimal combination of the key components by comparing it with existing deepfake detection methods.

대형 사전훈련 모델의 파인튜닝을 통한 강건한 한국어 음성인식 모델 구축 (Building robust Korean speech recognition model by fine-tuning large pretrained model)

  • 오창한;김청빈;박기영
    • 말소리와 음성과학
    • /
    • 제15권3호
    • /
    • pp.75-82
    • /
    • 2023
  • 자동 음성 인식(automatic speech recognition, ASR)은 딥러닝 기반 접근 방식으로 혁신되었으며, 그중에서도 자기 지도 학습 방법이 특히 효과적일 수 있음이 입증되고 있다. 본 연구에서는 다국어 ASR 시스템인 OpenAI의 Whisper 모델의 한국어 성능을 향상시키는 것을 목표하여 다국어 음성인식 시스템에서의 비주류 언어의 성능 문제를 개선하고자 한다. Whisper는 대용량 웹 음성 데이터 코퍼스(약 68만 시간)에서 사전 학습되었으며 주요 언어에 대한 강력한 인식 성능을 입증했다. 그러나 훈련 중 주요 언어가 아닌 한국어와 같은 언어를 인식하는 데 어려움을 겪을 수 있다. 우리는 약 1,000시간의 한국어 음성으로 구성된 추가 데이터 세트로 Whisper 모델을 파인튜닝하여 이 문제를 해결한다. 또한 동일한 데이터 세트를 사용하여 전체 훈련된 Transformer 모델을 베이스 라인으로 선정하여 성능을 비교한다. 실험 결과를 통해 Whisper 모델을 파인튜닝하면 문자 오류율(character error rate, CER) 측면에서 한국어 음성 인식 기능이 크게 향상되었음을 확인할 수 있다. 특히 모델 크기가 증가함에 따라 성능이 향상되는 경향을 포착하였다. 그러나 Whisper 모델의 영어 성능은 파인튜닝 후 성능이 저하됨을 확인하여 강력한 다국어 모델을 개발하기 위한 추가 연구의 필요성을 확인할 수 있었다. 추가적으로 우리의 연구는 한국어 음성인식 애플리케이션에 파인튜닝된 Whisper 모델을 활용할 수 있는 가능성을 확인할 수 있다. 향후 연구는 실시간 추론을 위한 다국어 인식과 최적화에 초점을 맞춰 실용적 연구를 이어갈 수 있겠다.

다중 각도 정보를 이용한 표적 구분 알고리즘 비교에 관한 연구 (A Comparative Study of Algorithms for Multi-Aspect Target Classifications)

  • 정호령;김경태;김효태
    • 한국전자파학회논문지
    • /
    • 제15권6호
    • /
    • pp.579-589
    • /
    • 2004
  • 일반적인 시간 영역에서의 레이더 신호들은 표적의 관측각에 민감하게 변화한다. 이로 인하여 각도가 넓어짐에 따라서 표적 구분의 정확도가 상당히 감소하게 된다. 이러한 문제를 해결하기 위하여 본 논문에서는 다중각도 정보를 이용하여 표적 구분 성능을 향상시키기 위한 방법을 제시한다. 먼저, 대표적인 시간영역 레이더신호인 1차원 range profile로부터 central moments와 PCA를 결합하여 특성백터를 추출한다. 추출된 특성백터에 다중 각도 정보를 사용하는 구분기를 적용시켜 넓은 관측각에서 표적 인식 성능을 향상시킬 수 있다. 다중 각도정보를 이용하는 기법에는 독립방식과 종속방식이 있으며, 본 논문에서는 두 기법의 성능을 비교한다. 성능 비교 실험에는 포항공대 단축거리 무반향실에서 측정된 여섯 개의 항공기 모델에 대한 레이더가 단면적 데이터가 이용된다.

Symbol recognition using vectorial signature matching for building mechanical drawings

  • Cho, Chi Yon;Liu, Xuesong;Akinci, Burcu
    • Advances in Computational Design
    • /
    • 제4권2호
    • /
    • pp.155-177
    • /
    • 2019
  • Operation and Maintenance (O&M) phase is the main contributor to the total lifecycle cost of a building. Previous studies have described that Building Information Models (BIM), if available with detailed asset information and their properties, can enable rapid troubleshooting and execution of O&M tasks by providing the required information of the facility. Despite the potential benefits, there is still rarely BIM with Mechanical, Electrical and Plumbing (MEP) assets and properties that are available for O&M. BIM is usually not in possession for existing buildings and generating BIM manually is a time-consuming process. Hence, there is a need for an automated approach that can reconstruct the MEP systems in BIM. Previous studies investigated automatic reconstruction of BIM using architectural drawings, structural drawings, or the combination with photos. But most of the previous studies are limited to reconstruct the architectural and structural components. Note that mechanical components in the building typically require more frequent maintenance than architectural or structural components. However, the building mechanical drawings are relatively more complex due to various type of symbols that are used to represent the mechanical systems. In order to address this challenge, this paper proposed a symbol recognition framework that can automatically recognize the different type of symbols in the building mechanical drawings. This study applied vector-based computer vision techniques to recognize the symbols and their properties (e.g., location, type, etc.) in two vector-based input documents: 2D drawings and the symbol description document. The framework not only enables recognizing and locating the mechanical component of interest for BIM reconstruction purpose but opens the possibility of merging the updated information into the current BIM in the future reducing the time of repeated manual creation of BIM after every renovation project.

Unsupervised Transfer Learning for Plant Anomaly Recognition

  • Xu, Mingle;Yoon, Sook;Lee, Jaesu;Park, Dong Sun
    • 스마트미디어저널
    • /
    • 제11권4호
    • /
    • pp.30-37
    • /
    • 2022
  • Disease threatens plant growth and recognizing the type of disease is essential to making a remedy. In recent years, deep learning has witnessed a significant improvement for this task, however, a large volume of labeled images is one of the requirements to get decent performance. But annotated images are difficult and expensive to obtain in the agricultural field. Therefore, designing an efficient and effective strategy is one of the challenges in this area with few labeled data. Transfer learning, assuming taking knowledge from a source domain to a target domain, is borrowed to address this issue and observed comparable results. However, current transfer learning strategies can be regarded as a supervised method as it hypothesizes that there are many labeled images in a source domain. In contrast, unsupervised transfer learning, using only images in a source domain, gives more convenience as collecting images is much easier than annotating. In this paper, we leverage unsupervised transfer learning to perform plant disease recognition, by which we achieve a better performance than supervised transfer learning in many cases. Besides, a vision transformer with a bigger model capacity than convolution is utilized to have a better-pretrained feature space. With the vision transformer-based unsupervised transfer learning, we achieve better results than current works in two datasets. Especially, we obtain 97.3% accuracy with only 30 training images for each class in the Plant Village dataset. We hope that our work can encourage the community to pay attention to vision transformer-based unsupervised transfer learning in the agricultural field when with few labeled images.

전문용어 인식 시스템을 위한 분산 병렬 처리 플랫폼 최적화 및 성능평가 (Optimization and Performance Analysis of Distributed Parallel Processing Platform for Terminology Recognition System)

  • 최윤수;이원구;이민호;최동훈;윤화묵;송사광;정한민
    • 한국콘텐츠학회논문지
    • /
    • 제12권10호
    • /
    • pp.1-10
    • /
    • 2012
  • 과학기술 문헌의 전문용어 인식 분야는 지금까지 다양한 통계적 방법론을 사용하여 용어 인식 정확률을 향상시키기 위하여 연구되어 왔다. 하지만 기존의 연구는 단일-코어 또는 단일 머신 상에서 수행되었기 때문에, 폭발적으로 증가하는 문헌들에 대한 실시간 분석 요구를 처리할 수 없는 상황에 직면하고 있다. 본 논문에서는 전문용어를 인식하는 과정에서 병목현상이 발생하는 작업을 '후보용어 추출 과정'의 언어처리부분과 '용어 가중치 할당 과정'에서 통계정보를 취합하는 부분으로 분류하고, 각 작업을 분산병렬 처리 기반의 맵리듀스 작업을 이용하여 해결하는 전문용어 인식 방법을 구현하고 실험하였다. 실험은 확장성과 분산 병렬 처리 환경 최적화 두 가지로 수행하였고, 첫 번째 실험에서 12개의 노드를 사용하여 분산 병렬 처리하였을 때 단일 머신을 사용한 경우보다 11.27배의 처리속도 향상을 보였다. 두 번째 실험에서 1)기본 환경, 2)복수 리듀서, 3)컴바이너, 4) 2)와 3)의 조합에 대하여 수행하였고, 3)컴바이너 사용이 가장 우수한 성능을 보여 주었다. 본 논문에서 구현된 전문용어 인식 시스템은 대용량 과학기술 문헌에 대한 지식 추출 작업속도 개선에 기여하였다.

Globalization, Family life, and the Future Research Environment in Home Economics and Human Sciences

  • Jim, Moran
    • International Journal of Human Ecology
    • /
    • 제4권2호
    • /
    • pp.89-100
    • /
    • 2003
  • This paper identifies trends in research methodology due to globalization. Context in both research and in practice and forms the key perspective for modern methodology and theory. Ecological perspectives are a necessary condition for quality global research. Human ecology researchers must advance the role of interdisciplinary and inter-functional perspectives and be open to collaborative relationships. These researchers must work in teams across disciplinary and functional boundaries. The paper discusses directions for research within the context of trends at U.S. federal agencies with applications to globalization and family life. Trends include: (a) use of diverse but rigorous methodologies; (b) recognition of the research-practice-research feedback loop;(c) primacy of context and diverse sampling; and (d) connections of research to problem solving. The terms promoted recently such as ″relationships″, ″diversity″ or ″problem-based″ are ingrained in human ecology. Key aspects for research in the next decade will be: (a) seeking diversity in sampling; (b) seeking colleagues with different perspectives; (c) incorporating meta-analysis into our work; (d) seeking meaningful results; (e) utilizing varieties of research methodologies to address our problems; and (0 understanding that practice must continually change as a function of research.

RN-ECC Based Fuzzy Vault for Protecting Fingerprint Templates

  • Lee, Dae-Jong;Shin, Yong-Nyuo;Park, Seon-Hong;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권4호
    • /
    • pp.286-292
    • /
    • 2011
  • Biometrics systems are used in a wide range of areas, including the area of crime prevention, due to their unique characteristics. However, serious problems can occur if biometric information is disclosed to an unauthorized user. To address these issues, this paper proposes a real valued fuzzy vault method, which adopts a real number error correction code to implement a fuzzy vault scheme for protecting fingerprint temples. The proposed method provides the benefit of allowing the private key value to be changed at any time, unlike biometric template such as a fingerprint, which is not easily renewable even if its security has been breached. The validity of the proposed method is verified for fingerprint verification.

Trends in US Nursing Research: Links to Global Healthcare Issues

  • Kenner, Carole A.
    • 간호행정학회지
    • /
    • 제23권1호
    • /
    • pp.1-7
    • /
    • 2017
  • Nursing research in the United States (US) spans several decades. Many of the priorities/trends have stayed through the years. Today, the goal of producing evidence to support nursing care interventions coupled with the drive for Magnet Recognition has encouraged academic nurses (faculty) to work with nurse clinicians to form research teams. Interdisciplinary research teams have also formed to address growing concerns over patient safety and quality care. These issues are not just US issues but global ones. This article addresses US trends with the link to global research trends. The role that organizations such as the International Council of Nurses (ICN), the World Health Organization (WHO), and the Council of International Neonatal Nurses, Inc. (COINN) pay in shaping research agendas and promoting nursing research is highlighted. It emphasizes the key role that nurses, especially nurse leaders/administrators play in changing health outcomes through support of nursing research.