Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.562-565
/
2022
Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. However, this irregular weight distribution is not possible to be recognized with the current weight measurement system for vehicles on roads. To address this limitation, we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles from the CCTV, black box, and hand-held camera point of view. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data. From the result, we believe that public big data can be utilized more efficiently and applied to the development of an object detection-based overloaded vehicle detection model.
How to study Southeast Asia (SEA)? The need to explore and identify methodologies for studying SEA are inherent in its multifaceted subject matter. At a minimum, the region's rich cultural diversity inhibits both the articulation of decisive defining characteristics and the training of scholars who can write with confidence beyond their specialisms. Consequently, the challenges of understanding the region remain and a consensus regarding the most effective approaches to studying its history, identity and future seem quite unlikely. Furthermore, "Area Studies" more generally, has proved to be a less attractive frame of reference for burgeoning scholarly trends. This paper will propose a new tool to help address these challenges. Even though the science of artificial intelligence (AI) is in its infancy, it has already yielded new approaches to many commercial, scientific and humanistic questions. At this point, AI has been used to produce news, generate better smart phones, deliver more entertainment choices, analyze earthquakes and write fiction. The time has come to explore the possibility that AI can be put at the service of the study of SEA. The paper intends to lay out what would be required to develop SEABOT. This instrument might exist as a robot on the web which might be called upon to make the study of SEA both broader and more comprehensive. The discussion will explore the financial resources, ownership and timeline needed to make SEABOT go from an idea to a reality. SEABOT would draw upon artificial neural networks (ANNs) to mine the region's "Big Data", while synthesizing the information to form new and useful perspectives on SEA. Overcoming significant language issues, applying multidisciplinary methods and drawing upon new yields of information should produce new questions and ways to conceptualize SEA. SEABOT could lead to findings which might not otherwise be achieved. SEABOT's work might well produce outcomes which could open up solutions to immediate regional problems, provide ASEAN planners with new resources and make it possible to eventually define and capitalize on SEA's "soft power". That is, new findings should provide the basis for ASEAN diplomats and policy-makers to develop new modalities of cultural diplomacy and improved governance. Last, SEABOT might also open up avenues to tell the SEA story in new distinctive ways. SEABOT is seen as a heuristic device to explore the results which this instrument might yield. More important the discussion will also raise the possibility that an AI-driven perspective on SEA may prove to be even more problematic than it is beneficial.
This study, with reference to data on economic conditions in Shandong Province, China, looked into trade and investment activities in Korea and major cities of Shandong - Qingdao, Yantai, Weihai and Jinan - and investigated claim cases between the two countries by type. In addition, we investigated the matter empirically by conducting a survey administered to 300 Korean companies investing in Shandong Province and, based on the data, tested hypotheses for inferential analysis. The findings are as follows: i) while hypotheses in which the size of a firm, represented by import and export volume, has a positive relation with the frequency of trade claim filings (H1) and with the financial value of the trade claims (H2) were quoted, company size proved to have a significantly negative relation with the time required to obtain a claim decision, which rejects the third hypothesis (H3) in which the relation was thought to be positive: ii) while products, as represented by the type of business, showed a clearly significant difference with the frequency of trade claim filings (H4) and with methods of preventing and responding to claims (H6), they did not show a significant link to the type of trade claim (H5). This study is a theoretical and empirical overview of Korean companies based in Shandong Province of China, and can be used to address the practical needs of the Korean companies looking to start business in Shandong Province.
The purpose of this study was to address the current status of hospital-based home care(HBHC). We analyzed the data on HBHC from national electronic data information of Health Insurance Review Agency. Beside, we surveyed 75 hospital-based home care agency. In 2006, 20,343 elderly(64.0% from all HBHC user) used 333,889 visits(76.8%from all visits). Medical diagnosis was composed of circulatory disease including cerebrovascular diseases 41.3%, endocrine system disease including Diabetes mellitus 10.4%, neoplasm 9.7%. Some of subjects used HBHC in excess of maximum covered 8 visits a month by National Health Insurance, decubitus 7.0%, the cancer 5.4%, the diabetes 2.5%, the hypertension 1.1%, and the stroke 0.9%. This results will contribute to expand the coverage of hospital-based home care by National Health Insurance. There was distribution difference in medical diagnosis and nursing intervention between HBHC and Public health center-based home care(PBHC) subjects. Therefore, HBHC subjects had more severe medical diagnosis, and were intervened more injections, examinations, than PBHC subjects. These differences must be considered to set up functional role among the three types of home visit care.
This paper analyzes the determining factors in the unemployment rate among young people in their 20s by studying data from 30 OECD countries between 2000 and 2017. It identifies reasons why Korea has a higher youth unemployment rate than Japan, and assesses what implications Japan's youth unemployment measures could have on Korea. The study highlights the variables that have meaningful impacts on youth unemployment. They include the unemployment rate among the working-age population, the percentage of each age bracket in the overall population, the GDP growth rate, the percentage of wage laborers in each age group, the percentage of elderly people, and the percentage of part-time workers. This paper also finds that a decline in the youth population, especially among people in their 20s, does not help to address the issue of youth unemployment. Secondly, this paper explains the additional factors behind Korea's higher youth unemployment rates. One is Korea's disadvantageous employment environment, compared to that in Japan, in terms of wage earnings. Other factors include the existence of fewer decent corporate jobs than in Japan, and wide disparities in wages between large and small corporate jobs. Therefore, while making efforts to resolve long-term and structural problems, it is necessary to actively promote policy measures to solve short-term mismatch problems of youth employment by referring to Japanese policy examples.
This study is based on recent advances in celebrity traits and self-determination researches to address how consumers develop the strong attachment to a "star brand," and the effect of consumer's attachment to star brand on evaluation of product brand sponsored by the star. We use the consumers' need satisfaction and star traits as major causal factors that influence consumer's attachment to a star brand. Specifically this article uses autonomy need, relatedness need, competence need as the dimensions of need satisfaction and expertness, trustworthiness, likeability, and similarity as the key star traits. The purpose of this study is to investigate the influence of these factors on the consumer's attachment to star brand and how consumer's evaluation of product brand sponsored by star is moderated by the fitness level of between the image of star brand and the image of sponsored product brand. To collect the data, survey was taken in a University located in Incheon. Collected data are analysed using SPSS 15.0 and AMOS 7.0. The results show that when the star brand is perceived as more trustworthy and likeable, and satisfies autonomy need and relatedness need, the consumer is more likely to become strongly attached to him or her. The hypothesis that consumer's attachment to star brand will have the positive influence on the evaluation of product brand sponsored by star is supported. And hypothesis that consumer's attitude to a sponsored product brand is moderated by the fitness level of between the image of star brand and the image of sponsored product brand is also supported. The empirical results imply that star brand to which consumers are attached may have the significant positive impact on the consumers' evaluation process of endorsed product brand and purchase behavior, and that marketers should consider need dimensions which target consumers want to satisfy and the fitness level of between the image of star brand being considered as endorser and the image of product brand.
The purpose of this study is to examine the relationship between rejection sensitivity and reactive aggression among college students, as well as to determine the mediating effects of self-concept clarity and hostile attribution bias on the relationship between rejection sensitivity and reactive aggression. A self-report questionnaire was conducted online for the purpose of gathering data from university students aged 18 years and older. A total of 250 participants were included in the analysis. SPSS 27.0 was used for data analysis to check the basic statistics of the variables, frequency analysis, reliability analysis, and correlation analysis. In addition, the model fit was checked using Amos 21.0, and the bootstrapping method verified the significance of the indirect effect. The results of this study are as follows. The results of this study are as follows. First, rejection sensitivity positively affects reactive aggression through self-concept clarity. Second, rejection sensitivity increases the hostile attribution bias, leading to an increase in reactive aggression. Third, rejection sensitivity positively influences reactive aggression in an indirect way by sequentially affecting self-concept clarity and hostile attribution bias. These findings have implications as they identify psychological factors that affect reactive aggression in college students. This suggests the importance of utilizing psychological interventions to address reactive aggression associated with social problems, such as crime, and provides a foundation for both treatment and prevention. Finally, implications for further research and limitations of this study are suggested.
Moon-Won Cho;Heung-Bae Choi;Myeong-Soo Han;Eun-Song Jung;Tae-Soon Kang
Journal of the Korean Society of Marine Environment & Safety
/
v.29
no.6
/
pp.543-551
/
2023
As climate change continues to prompt an increasing demand for advancements in disaster and safety management technologies to address abnormal high water temperatures, typhoons, floods, and droughts, sea surface temperature has emerged as a pivotal factor for swiftly assessing the impacts of summer harmful algal blooms in the seas surrounding Korean Peninsula and the formation and dissipation of cold water along the East Coast of Korea. Therefore, this study sought to gauge predictive performance by leveraging statistical methods and deep learning algorithms to harness sea surface temperature data effectively for marine anomaly research. The sea surface temperature data employed in the predictions spans from 2018 to 2022 and originates from the Heuksando Tidal Observatory. Both traditional statistical ARIMA methods and advanced deep learning models, including long short-term memory (LSTM) and gated recurrent unit (GRU), were employed. Furthermore, prediction performance was evaluated using the attention LSTM technique. The technique integrated an attention mechanism into the sequence-to-sequence (s2s), further augmenting the performance of LSTM. The results showed that the attention LSTM model outperformed the other models, signifying its superior predictive performance. Additionally, fine-tuning hyperparameters can improve sea surface temperature performance.
As the tourism industry recovers post the COVID-19 pandemic, an increasing number of tourists are utilizing various platforms to leave reviews. However, amidst the vast amount of data, finding useful information remains challenging, often leading to time and cost inefficiencies in selecting travel destinations. Despite ongoing research, there are limitations due to the absence of ratings or the presence of different rating formats across platforms. Moreover, inconsistencies between ratings and the content of reviews pose challenges in developing recommendation models. To address these issues, this study utilized 7,104 reviews of tourist spots in Jeju Island to develop a specialized satisfaction index for Jeju tourist attractions and employed this index to construct a 'Rating Prediction Model.' To validate the model's performance, we predicted the ratings of 700 experimental data points using both the developed model and an LSTM approach. The proposed model demonstrated superior performance with a weighted accuracy of 73.87%, which is approximately 4.67% higher than that of the LSTM. The results of this study are expected to resolve the discrepancies between ratings and review contents, standardize ratings in reviews without ratings or in various formats, and provide reliable rating indicators applicable across all areas of travel in different domains.
The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.