• Title/Summary/Keyword: Address Allocation

Search Result 141, Processing Time 0.022 seconds

Quantization-aware Sensor Selection for Source Localization in Sensor Networks

  • Kim, Yoon-Hak
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.155-160
    • /
    • 2011
  • In distributed source localization where sensors transmit measurements to a fusion node, we address the sensor selection problem where the goal is to find the best set of sensors that maximizes localization accuracy when quantization of sensor measurements is taken into account. Since sensor selection depends heavily upon rate assigned to each sensor, joint optimization of rate allocation and sensor selection is required to achieve the best solution. We show that this task could be accomplished by solving the problem of allocating rates to each sensor so as to minimize the error in estimating the position of a source. Then we solve this rate allocation problem by using the generalized BFOS algorithm. Our experiments demonstrate that the best set of sensors obtained from the proposed sensor selection algorithm leads to significant improvements in localization performance with respect to the set of sensors determined from a sensor selection process based on unquantized measurements.

Conflict Graph-based Downlink Resource Allocation and Scheduling for Indoor Visible Light Communications

  • Liu, Huanlin;Dai, Hongyue;Chen, Yong;Xia, Peijie
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.36-41
    • /
    • 2016
  • Visible Light Communication (VLC) using Light Emitting Diodes (LEDs) within the existing lighting infrastructure can reduce the implementation cost and may gain higher throughput than radio frequency (RF) or Infrared (IR) based wireless systems. Current indoor VLC systems may suffer from poor downlink resource allocation problems and small system throughput. To address these two issues, we propose an algorithm called a conflict graph scheduling (CGS) algorithm, including a conflict graph and a scheme that is based on the conflict graph. The conflict graph can ensure that users are able to transmit data without interference. The scheme considers the user fairness and system throughput, so that they both can get optimum values. Simulation results show that the proposed algorithm can guarantee significant improvement of system throughput under the premise of fairness.

Dynamic Caching Routing Strategy for LEO Satellite Nodes Based on Gradient Boosting Regression Tree

  • Yang Yang;Shengbo Hu;Guiju Lu
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.131-147
    • /
    • 2024
  • A routing strategy based on traffic prediction and dynamic cache allocation for satellite nodes is proposed to address the issues of high propagation delay and overall delay of inter-satellite and satellite-to-ground links in low Earth orbit (LEO) satellite systems. The spatial and temporal correlations of satellite network traffic were analyzed, and the relevant traffic through the target satellite was extracted as raw input for traffic prediction. An improved gradient boosting regression tree algorithm was used for traffic prediction. Based on the traffic prediction results, a dynamic cache allocation routing strategy is proposed. The satellite nodes periodically monitor the traffic load on inter-satellite links (ISLs) and dynamically allocate cache resources for each ISL with neighboring nodes. Simulation results demonstrate that the proposed routing strategy effectively reduces packet loss rate and average end-to-end delay and improves the distribution of services across the entire network.

An IP Subnet Address Calculation and Management method on VLSM (VLSM기반 IP 서브넷 주소 계산법 및 관리기법)

  • Cheon SeongKwon;Jin DongXue;Kim YoungRag;Kim ChongGun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.97-104
    • /
    • 2005
  • One of the problems of the currently used IPv4 addressing-structure is the fact that there is a shortage of IP addresses and many addresses are being wasted, especially on sub-netting design. The variable subnet masking is a resolution to reduce IP address wasting. We propose an effective subnet W address calculation and management method on VLSM. Also, with the proposed subnet IP address management method, a web based subnet allocation and management system is introduced.

Garbage Collection Technique for Non-volatile Memory by Using Tree Data Structure (트리 자료구조를 이용한 비 휘발성 메모리의 가비지 수집 기법)

  • Lee, Dokeun;Won, Youjip
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.152-162
    • /
    • 2016
  • Most traditional garbage collectors commonly use the language level metadata, which is designed for pointer type searching. However, because it is difficult to use this metadata in non-volatile memory allocation platforms, a new garbage collection technique is essential for non-volatile memory utilization. In this paper, we design new metadata for managing information regarding non-volatile memory allocation called "Allocation Tree". This metadata is comprised of tree data structure for fast information lookup and a node that holds an allocation address and an object ID pair in key-value form. The Garbage Collector starts collecting when there are insufficient non-volatile memory spaces, and it compares user data and the allocation tree for garbage detection. We develop this algorithm in a persistent heap based non-volatile memory allocation platform called "HEAPO" for demonstration.

Centralized Channel Allocation Schemes for Incomplete Medium Sharing Systems with General Channel Access Constraints (불완전매체공유 시스템을 위한 집중방식 채널할당기법)

  • Kim Dae-Woo;Lee Byoung-Seok;Choe Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3B
    • /
    • pp.183-198
    • /
    • 2006
  • We define the incomplete medium sharing system as a multi-channel shared medium communication system where constraints are imposed to the set of channels that may be allocated to some transmitter-receiver node pairs. To derive a centralized MAC scheme of a incomplete medium sharing system, we address the problem of optimal channel allocation The optimal channel allocation problem is then translated into a max-flow problem in a multi-commodity flow graph, and it is shown that the optimal solution can then be obtained by solving a linear programming problem. In addition, two suboptimal channel allocation schemes are proposed to bring down the computational complexity to a practical/feasible level; (1) one is a modified iSLIP channel allocation scheme, (2) the other is sequential channel allocation scheme. From the results of a extensive set of numerical experiments, it is found that the suboptimal schemes evaluate channel utilization close to that of the optimal schemes while requiring much less amount of computation than the optimal scheme. In particular, the sequential channel allocation scheme is shown to achieve higher channel utilization with less computational complexity than . the modified iSLIP channel allocation scheme.

A Study on Efficient IPv6 Address Allocation for Future Military (미래 군을 위한 효율적인 IPv6 주소 할당에 관한 연구)

  • Hanwoo Lee;Suhwan Kim;Gunwoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.613-618
    • /
    • 2023
  • The advancement of Information and Communication Technology (ICT) is accelerating innovation across society, and the defense sector is no exception as it adopts technologies aligned with the Fourth Industrial Revolution. In particular, the Army is making efforts to establish an advanced Army TIGER 4.0 system, aiming to create highly intelligent and interconnected mobile units. To achieve this, the Army is integrating cutting-edge scientific and technological advancements from the Fourth Industrial Revolution to enhance mobility, networking, and intelligence. However, the existing addressing system, IPv4, has limitations in meeting the exponentially increasing demands for network IP addresses. Consequently, the military considers IPv6 address allocation as an essential process to ensure efficient network management and address space provisioning. This study proposes an approach for IPv6 address allocation for the future military, considering the Army TIGER system. The proposal outlines how the application networks of the Army can be differentiated, and IP addresses can be allocated to future unit structures of the Army, Navy, and Air Force, from the Ministry of National Defense and the Joint Chiefs of Staff. Through this approach, the Army's advanced ground combat system, Army TIGER 4.0, is expected to operate more efficiently in network environments, enhancing overall information exchange and mobility for the future military.

On Power Allocation Schemes for Bi-directional Communication in a Spectrum Sharing-based Cognitive Radio System

  • Kim, Hyungjong;Wang, Hanho;Hong, Daesik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.5
    • /
    • pp.285-297
    • /
    • 2014
  • This paper presents the results of an investigation into bi-directional communication in spectrum sharing-based cognitive radio (Bi-CR) systems. A Bi-CR system can increase the spectral efficiency significantly by sharing the spectrum and through the bi-directional use of spatial resources for two-way communication. On the other hand, the primary user experiences more interference from the secondary users in a Bi-CR system. Satisfying the interference constraint by simply reducing the transmission power results in performance degradation for secondary users. In addition, secondary users also experience self-interference from echo channels due to full duplexing. These imperfections may weaken the potential benefits of the Bi-CR system. Therefore, a new way to overcome these defects in the Bi-CR system is needed. To address this need, this paper proposes some novel power allocation schemes for the Bi-CR system. This contribution is based on two major analytic environments, i.e., noise-limited and interference-limited environments, for providing useful analysis. This paper first proposes an optimal power allocation (OPA) scheme in a noise-limited environment and then analyzes the achievable sum rates. This OPA scheme has an effect in the noise-limited environment. In addition, a power allocation scheme for the Bi-CR system in an interference-limited environment was also investigated. The numerical results showed that the proposed schemes can achieve the full duplexing gain available from the bi-directional use of spatial resources.

Joint Spectrum and Power Allocation for Green D2D Communication with Physical Layer Security Consideration

  • Chen, Hualiang;Cai, Yueming;Wu, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1057-1073
    • /
    • 2015
  • In this paper, we consider cooperative D2D communications in cellular networks. More precisely, a cellular user leases part of its spectrum to facilitate the D2D communication with a goal of improving the energy efficiency of a D2D pair. However the D2D pair is untrusted to the cellular user, such resource sharing may result in the information of this cellular user unsecured. In order to motivate the cellular user's generosity, this D2D pair needs to help the cellular user maintain a target secrecy rate. To address this issue, we formulate a joint spectrum and power allocation problem to maximize the energy efficiency of the D2D communication while guaranteeing the physical layer security of the cellular user. Then, a theorem is proved to indicate the best resource allocation strategy, and accordingly, an algorithm is proposed to find the best solution to this resource allocation problem. Numerical results are finally presented to verify the validity and effectiveness of the proposed algorithm.

Integrated Inventory Allocation and Customer Order Admission Control in a Two-stage Supply Chain with Make-to-stock and Make-to-order Facilities (계획생산과 주문생산 시설들로 이루어진 두 단계 공급망에서 재고 할당과 고객주문 수용 통제의 통합적 관리)

  • Kim, Eun-Gab
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.1
    • /
    • pp.83-95
    • /
    • 2010
  • This paper considers a firm that operates make-to-stock and make-to-order facilities in successive stages. The make-to-stock facility produces components which are consumed by the external market demand as well as the internal make-to-order operation. The make-to-order facility processes customer orders with the option of acceptance or rejection. In this paper, we address the problem of coordinating how to allocate the capacity of the make-to-stock facility to internal and external demands and how to control incoming customer orders at the make-to-order facility so as to maximize the firm's profit subject to the system costs. To deal with this issue, we formulate the problem as a Markov decision process and characterize the structure of the optimal inventory allocation and customer order control. In a numerical experiment, we compare the performance of the optimal policy to the heuristic with static inventory allocation and admission control under different operating conditions of the system.