• Title/Summary/Keyword: Additive manufacturing (AM)

Search Result 78, Processing Time 0.023 seconds

Research Trend of Additive Manufacturing Technology - A=B+C+D+E, add Innovative Concept to Current Additive Manufacturing Technology: Four Conceptual Factors for Building Additive Manufacturing Technology -

  • Choi, Hanshin;Byun, Jong Min;Lee, Wonsik;Bang, Su-Ryong;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.149-169
    • /
    • 2016
  • Additive manufacturing (AM) is defined as the manufacture of three-dimensional tangible products by additively consolidating two-dimensional patterns layer by layer. In this review, we introduce four fundamental conceptual pillars that support AM technology: the bottom-up manufacturing factor, computer-aided manufacturing factor, distributed manufacturing factor, and eliminated manufacturing factor. All the conceptual factors work together; however, business strategy and technology optimization will vary according to the main factor that we emphasize. In parallel to the manufacturing paradigm shift toward mass personalization, manufacturing industrial ecology evolves to achieve competitiveness in economics of scope. AM technology is indeed a potent candidate manufacturing technology for satisfying volatile and customized markets. From the viewpoint of the innovation technology adoption cycle, various pros and cons of AM technology themselves prove that it is an innovative technology, in particular a disruptive innovation in manufacturing technology, as powder technology was when ingot metallurgy was dominant. Chasms related to the AM technology adoption cycle and efforts to cross the chasms are considered.

Technology Trend of the additive Manufacturing (AM) (적층식 제조(Additive manufacturing) 기술동향)

  • Oh, Ji-Won;Na, Hyunwoong;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.494-507
    • /
    • 2017
  • A three-dimensional physical part can be fabricated from a three-dimensional digital model in a layer-wise manner via additive manufacturing (AM) technology, which is different from the conventional subtractive manufacturing technology. Numerous studies have been conducted to take advantage of the AM opportunities to penetrate bespoke custom product markets, functional engineering part markets, volatile low-volume markets, and spare part markets. Nevertheless, materials issues, machines issues, product issues, and qualification/certification issues still prevent the AM technology from being extensively adopted in industries. The present study briefly reviews the standard classification, technological structures, industrial applications, technological advances, and qualification/certification activities of the AM technology. The economics, productivity, quality, and reliability of the AM technology should be further improved to pass through the technology adoption lifecycle of innovation technology. The AM technology is continuously evolving through the introduction of PM materials, hybridization of AM and conventional manufacturing technologies, adoption of process diagnostics and control systems, and enhanced standardization of the whole lifecycle qualification and certification methodology.

Investigation to Metal 3D Printing Additive Manufacturing (AM) Process Simulation Technology (II) (금속 3D 프린팅 적층제조(AM) 공정 시뮬레이션 기술에 관한 고찰(II))

  • Kim, Yong Seok;Choi, Seong Woong;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.51-58
    • /
    • 2019
  • The objective of this study was to investigate a simulation technology for the AM field based on ANSYS Inc.. The introduction of metal 3D printing AM process, and the examining of the present status of AM process simulation software, and the AM process simulation processor were done in the previous study (part 1). This present study (part 2) examined the use of the AM process simulation processor, presented in Part 1, through direct execution of Topology Optimization, Ansys Workbench, Additive Print and Additive Science. Topology Optimization can optimize additive geometry to reduce mass while maintaining strength for AM products. This can reduce the amount of material required for additive and significantly reduce additive build time. Ansys Workbench and Additive Print simulate the build process in the AM process and optimize various process variables (printing parameters and supporter composition), which will enable the AM to predict the problems that may occur during the build process, and can also be used to predict and correct deformations in geometry. Additive Science can simulate the material to find the material characteristic before the AM process simulation or build-up. This can be done by combining specimen preparation, measurement, and simulation for material measurements to find the exact material characteristics. This study will enable the understanding of the general process of AM simulation more easily. Furthermore, it will be of great help to a reader who wants to experience and appreciate AM simulation for the first time.

Multi-step Metals Additive Manufacturing Technologies

  • Oh, Ji-Won;Park, Jinsu;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.256-267
    • /
    • 2020
  • Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.

In situ monitoring-based feature extraction for metal additive manufacturing products warpage prediction

  • Lee, Jungeon;Baek, Adrian M. Chung;Kim, Namhun;Kwon, Daeil
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.767-775
    • /
    • 2022
  • Metal additive manufacturing (AM), also known as metal three-dimensional (3D) printing, produces 3D metal products by repeatedly adding and solidifying metal materials layer by layer. During the metal AM process, products experience repeated local melting and cooling using a laser or electron beam, resulting in product defects, such as warpage, cracks, and internal pores. Such defects adversely affect the final product. This paper proposes the in situ monitoring-based warpage prediction of metal AM products with experimental feature extraction. The temperature profile of the metal AM substrate during the process was experimentally collected. Time-domain features were extracted from the temperature profile, and their relationships to the warpage mechanism were investigated. The standard deviation showed a significant linear correlation with warpage. The findings from this study are expected to contribute to optimizing process parameters for metal AM warpage reduction.

A Study on the Mechanical Properties of Additive Manufactured Polymer Materials (적층조형 폴리머 재료의 기계적 물성 연구)

  • Kim, Dongbum;Lee, In Hwan;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.773-780
    • /
    • 2015
  • Traditionally, additive manufacturing (AM) technology has been used to fabricate prototypes in the early development phase of a product. This technology is being applied to release manufacturing of a product because of its low cost and fast fabrication. AM technology is a process of joining materials to fabricate a product from the 3D CAD data in a layer-by-layer manner. The orientation of a layer during manufacturing can affect the mechanical properties of the product because of its anisotropy. In this paper, tensile testing of polymer-based specimens were built with a typical AM process (FDM, PolyJet and SLA) to study the mechanical properties of the AM materials. The ASTM D 638 tensile testing standard was followed for building the specimens. The mechanical properties of the specimens were determined on the basis of stress-strain curves formed by tensile tests. In addition, the fracture surfaces of the specimens were observed by SEM to analyze the results.

Architectural Product and Formwork Manufacture using 3D Printing - Applicability Verification Through Manufacturing Factor Prediction and Experimentation - (3D 프린팅을 통한 거푸집 제조 및 건축 상품 구현 - 제조인자예측과 실험을 통한 적용가능성 검증 -)

  • Park, Jinsu;Kim, kyung taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.113-117
    • /
    • 2022
  • Additive manufacturing (AM, also known as 3D printing) technology is digitalized technology, making it easy to predict and manage quality and also, have design freedom ability. With these advantages, AM technology is applied to various industries. In particular, a method of manufacturing buildings and infrastructure with AM technology is being proposed to the construction industry. However, the application of AM technology is restricted due to problems such as insufficient history and quality of technology, lack of construction management methods, and certification of manufacturing products. Therefore, the manufacture of architectural products is implemented with indirect AM technology. In particular, it manufactures formwork using AM and injecting building materials to implement the architectural product. In this study, hybrid type material extrusion AM is used to manufacture large-sized formwork and implement building products. Moreover, we identify factors that can predict productivity and economic feasibility in the additive manufacturing process. As a result, design optimization results are proposed to reduce the production cost and time of architecture buildings.

Production of Casting Cores using Powder Binder Jetting Techniques (접착제 분사 기술을 활용한 산업용 중자 제작)

  • Choi, Jin-Yong;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.245-250
    • /
    • 2019
  • In recent years, new technologies such as additive manufacturing have been applied to casting industry, paving new ways to achieve what have traditionally been impossible. In the global market, numerous successful cases of producing cores using additive manufacturing technology have been reported, and new techniques and markets are being developed under governments' support. In Korea, however; cases of applying additive manufacturing to casting are hard to come by, not to mention domestic AM machines and related technologies. Under these circumstances, introduction of additive manufacturing technologies and customized application to domestic casting industry are required. Each chapter of this paper explores topics ranging from the development of AM machine using binder jetting technology among various AM techniques through producing industrial cores to the on-site applications in the foundries.

International Development Trend and Technical Issues of Metal Additive Manufacturing (금속 적층제조기술의 국내외 개발동향과 기술적 이슈)

  • Kang, Min-Cheol;Ye, Dea-Hee;Go, Geun-Ho
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.9-16
    • /
    • 2016
  • Metal parts are produced by conventional methods such as casting, forging and cutting, extrusion, etc. However, nowadays, with additive manufacturing (AM), it is possible to directly commercialize by means of stacking of equipment to the 3D drawing and use of high precision tools such as laser source. Thus, drawing of materials is an important aspect in delivering good products. AM deals with production of lighter aircraft parts and few more three-dimensional molds, it wish to manufacture special medical parts and want to steadily expand the new market area. The cost of related equipment and materials are still expensive and difficult to obtain on a mass production. However, the ability to make changes and lead the innovation in the paradigm of traditional manufacturing process is still effective. In this paper, we introduce metal AM and the principles of the related devices, metal powder production process, and their application.

Advanced PM Processes for Medical Technologies

  • Petzoldt, Frank;Friederici, Vera;Imgrund, Philipp;Aumund-Kopp, Claus
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Medical technologies are gaining in importance because of scientific and technical progress in medicine and the increasing average lifetime of people. This has opened up a huge market for medical devices, where complex-shaped metallic parts made from biocompatible materials are in great demand. Today many of these components are already being manufactured by powder metallurgy technologies. This includes mass production of standard products and also customized components. In this paper some aspects related to metal injection molding of Ti and its alloys as well as modifications of microstructure and surface finish were discussed. The process chain of additive manufacturing (AM) was described and the current state of the art of AM processes like Selective Laser Melting and electron beam melting for medical applications was presented.