• Title/Summary/Keyword: Additive catalyst

Search Result 76, Processing Time 0.023 seconds

Effect of protective colloid on the synthesis of Poly(Vinyl acetate-co-Ethyl acrylate) (Poly(VAc-co-EA) 공중합체 제조에 있어 보호콜로이드의 영향에 관한 연구)

  • Kim, Nam-Seok;Kim, Sung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.216-221
    • /
    • 2010
  • Polyvinyl acetate (PVAc) prepared by emulsion polymerization has broad applications for additive such as paint binder, adhesive for wood and paper due to its low glass transition temperature which help to plasticize substrate resins. Since emulsion polymerization has a disadvantage that surfactant and ionic initiator degrade properties of the product polymer, poly (vinyl acetate-eo-ethyl acrylate) (VAc-EA) was synthesized using potassium persulfate as catalyst and polyvinylalcohol (PVA) as protective colloid to prevent the degradation. The copolymer latex product was internally plasticized and has enhanced adhesion, water resistance during VAc-EA emulsion polymerization. No coagulation and complete conversion occur with the reactant mixture of 10 mmol/L potassium persulfate, 10 mmol/L poly ( vinyl alcohol) (PVA 17). As the concentrations of PVA increase, the viscosity becomes increase.

Changes of Linolenic Acid Content and Reactivity during Partial Hydrogenation of Soybean Oil with and without Lecithin (레시틴의 첨가 유, 무에 따른 대두유의 수소첨가 반응성과 리놀렌산의 변화)

  • Kwon, Hye-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.41-46
    • /
    • 1995
  • Changes of fatty acid composition and reaction rate were investigated according to reaction condition during partial hydrogenation reaction of soybean oil until its iodine value decreased from 134 to 110. The reaction conditions were varied in the range of from $170^{\circ}C$ to $210^{\circ}C$ of temperature, from 1.3 atm to 4.2 atm of pressure and from 0.005% to 0.1% of nickel concentration as catalyst. Lecithin was added in soybean oil to investigate the change of reaction rate. The result of addition of lecithin showed that reaction rate decreased to from 2 to 6 times in comparison with non-additive system.

  • PDF

Rapid and Ecofriendly Esterification of Alcohols with 2-Acylpyridazinones

  • Kim, Bo Ram;Sung, Gi Hyeon;Ryu, Ki Eun;Kim, Jeum-Jong;Yoon, Yong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3410-3414
    • /
    • 2013
  • Atom-economical esterification is of great importance in green chemistry. In this work, we demonstrated the catalyst and additive free esterification of alcohols by their reaction with 2-acyl-4,5-dichloropyridazin-3(2H)-ones without solvent at $100^{\circ}C$. Aliphatic and aromatic alcohols were converted into the corresponding esters in good to excellent yields. It is noteworthy that the reaction is solvent-free, atom-economic, easy-workup, and rapid and that the process is inexpensive.

Effect of the supporting substrate on the production yield for geometrically controlled carbon coils

  • Park, Se-Mi;Kim, Sung-Hoon;Jeon, Young-Chul;Kim, DongUk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.218-219
    • /
    • 2012
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. Prior to the carbon coils deposition reaction, two kinds of samples having different combination of Ni catalyst and substrate were employed, namely a commercially-made $Al_2O_3$ ceramic boat with Ni powders and a commercially-made $Al_2O_3$ substrate with Ni layer. By using a commercially-made $Al_2O_3$ ceramic boat, the production yield of carbon coils could be enhanced as much as 10 times higher than that of $Al_2O_3$ substrate. Furthermore, the dominant formation of the microsized carbon coils could be obtained by using $Al_2O_3$ ceramic boat.

  • PDF

SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects (셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화)

  • Kim, Eun Ae;Bai, Byong Chol;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.394-399
    • /
    • 2015
  • In this study, the Cu catalyst decorated with activated carbon fibers were prepared for improving $SO_2$ adsorption properties. Flame retardant and heat treatments of Lyocell fibers were carried out to obtain carbon fibers with high yield. The prepared carbon fibers were activated by KOH solution for the high specific surface area and controlled pore size to improve $SO_2$ adsorption properties. Copper nitrate was also used to introduce the Cu catalyst on the activated carbon fibers (ACFs), which can induce various reactions in the process; i) copper nitrate promotes the decomposition reaction of oxygen group on the carbon fiber and ii) oxygen radical is generated by the decomposition of copper oxide and nitrates to promote the activation reaction of carbon fibers. As a result, the micro and meso pores were formed and Cu catalysts evenly distributed on ACFs. By Cu-impregnation process, both the specific surface area and micropore volume of carbon fibers increased over 10% compared to those of ACFs only. Also, this resulted in an increase in $SO_2$ adsorption capacity over 149% than that of using the raw ACF. The improvement in $SO_2$ adsorption properties may be originated from the synergy effect of two properties; (i) the physical adsorption from micro, meso and specific surface area due to the transition metal catalyst effect appeared during Cu-impregnation process and ii) the chemical adsorption of $SO_2$ gas promoted by the Cu catalyst on ACFs.

The Effects of Polymerization Catalyst Systems on the Synthesis of Poly(2,6-dimethyl-1,4-phenylene ether) (중합촉매 시스템이 폴리페닐렌에테르의 합성에 미치는 영향)

  • Lee, Chang-Jae;Kim, Yong-Tae;Kim, Jin-Kyu;Kim, Ji-Heung;Nam, Sung-Woo;Jeon, Boong-Soo;Kim, Young-Jun
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.98-103
    • /
    • 2012
  • Poly(2,6-dimethyl-1,4-phenylene ether) (PPE) was synthesized using $Cu(NO_2)_2{\cdot}3H_2O$ or CuCl catalyst with various amounts of ligand and base in several different solvent systems. CuCl/1-methylimidazole/ammonium hydroxide was found to be an effective catalyst system which showed the highest polymer yield and molecular weight. The effects of catalyst/monomer ratio, different amine ligands, and the content of mono-functional reagent 2,4,6-trimethylphenol (TMP) additive on the polymer yield and molecular weight were investigated. Among the co-solvent systems used in this polymerization, chloroform/methanol 9/1(v/v) gave the highest polymer yield and molecular weight ($\overline{M_n}$ 55 K, $\overline{M_w}$ 92 K, PDI 1.7). The catalytic activity between CuCl and CuI was compared by oxygen-uptake experiments and the formation of sideproduct, 5,5'-tetramethyl-4,4'-diphenoquinone (DPQ), was analyzed by ultraviolet spectroscopy.

P123-Templated Co3O4/Al2O3 Mesoporous Mixed Oxides for Epoxidation of Styrene

  • Jung, Mie-Won;Kim, Young-Sil
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.316-320
    • /
    • 2012
  • $Co_3O_4$, $Al_2O_3$ and $Co_3O_4$/$Al_2O_3$ mesoporous powders were prepared by a sol-gel method with starting matierals of aluminum isopropoxide and cobalt (II) nitrate. A P123 template is employed as an active organic additive for improving the specific surface area of the mixed oxide by forming surfactant micelles. A transition metal cobalt oxide supported on alumina with and without P123 was tested to find the most active and selective conditions as a heterogeneous catalyst in the reaction of styrene epoxidation. A bBlock copolymer-P123 template was added to the staring materials to control physical and chemical properties. The properties of $Co_3O_4$/$Al_2O_3$ powder with and without P123 were characterized using an X-ray diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), a Bruner-Emmertt-Teller (BET) surface analyzer, and $^{27}Al$ MAS NMR spectroscopy. Powders with and without P123 were compared in catalytic tests. The catalytic activity and selectivity were monitored by GC/MS, $^1H$, and $^{13}C$-NMR spectroscopy. The performance for the reaction of epoxidation of styrene was observed to be in the following order: [$Co_3O_4$/$Al_2O_3$ with P123-1173 K > $Co_3O_4$/$Al_2O_3$ with P123-973 K > $Co_3O_4$-973 K>$Co_3O_4$/$Al_2O_3$-973 K > $Co_3O_4$/$Al_2O_3$ with P123-1473 K > $Al_2O_3$-973 K]. The existence of ${\gamma}$-alumina and the nature of the surface morphology are related to catalytic activity.

STUDIES ON THE BOND BETWEEN COMPOSITE RESIN AND DENTIN TREATED BY DENTIN BONDING AGENTS (상아질 표면 처리에 의한 상아질과 복합레진의 결합에 관한 연구)

  • Youn, Dong-Ho;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.36-54
    • /
    • 1992
  • The purpose of this study was to compare the shear bond strengths to ground dentin surfaces of four dentinal bonding agents in 193 teeth. Various dentin surfaces treated with four dentin bonding agents were attached with two restorative composite resins. The effectiveness of the bonding were tested by the monitoring the shear bond strength. The shear bond strengths were measured after 2 hours and 24 hours after surface conditioning with four dentin bonding agents. Effects of EDTA, the additive illumination, and sealer treatments without primer on bond strength to dentin surfaces were assessed. In addition the effects of the thickness of specimens ranging from 0.65 mm to 1.95 mm and the ratio of catalyst and base paste on the bond strength of chemical cure composite resin were estimated. The shear bond strength was determined by testing specimens in the Instron universal testing machine (Model No. 1122) at a crosshead speed of 1.0 mm/min. Following condusions were drawn: 1. The highest mean shear bond strengths of chemical cure composite resin to dentin conditioning with dentin bonding agents aged 2 hours were obtained, and then that was decreased with time followed by EDTA treatment. 2. In light cure composite resin, the shear bond strength was increased following dentin conditioning with bonding agents with time, irradiation time and EDTA treatment except in SB group. 3. The thicker the composite resin specimen was, the less the shear bond strength in chemical cure composite resin was. 4. In light cure composite resin, there was a little change in shear bond strength following dentin conditioning with bonding agents. 5. In chemical cure composite resin, the shear bond strength was the highest in the ratio of 1/1 of catalyst and base part. 6. Without a dentin primer, shear bond strength to dentin conditioned only with UB sealer was the highest among four sealers in light cure composite resin.

  • PDF

Thermal Stabilization of Alumina by Ba Addition (Ba 첨가에 의한 알루미나의 열 안정화 효과)

  • Seo, Doo-Won;Han, Moon-Hee;Lee, Chae-Hyun
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.139-145
    • /
    • 1997
  • The effect of Ba addition on the thermal stabilization of $\gamma$-$Al_2O_3$ powders were studied. Ba additive was introduced into $\gamma$-$Al_2O_3$ powders by wet impregnation of $Ba(No_3)_3$.$6H_2O$. Ba additive was proved to be effective on the thermal stabilization of $\gamma$-$Al_2O_3$ powders by suppression of sintering. The optimum content of Ba was determined by 5 mol%, through the calcinations temperature range. It is suggested that the main reason of thermal stabilizaton is the substitution effect of large $Ba^{2+}$ ions into the $\Al^{3+}$ sites, which suppressed the surface diffusion of $\Al^{3+}$ ions.

  • PDF

Large-scale synthesis of the carbon coils using stainless steel substrate

  • Jeon, Young-Chul;Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.296-301
    • /
    • 2013
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under the thermal chemical vapor deposition system. A 304-type stainless steel was used as a substrate with nickel powders as the catalyst. The surface of the substrate was pretreated using a sand paper or a mechanical drill to enhance the production yield of the carbon coils. The characteristics of the deposited carbon nanomaterials on the substrates were investigated according to the surface state on the stainless steel substrate. The protrusion induced by the grooves on the substrate surface could enhance the formation of the carbon nanomaterials having the coils geometries. The cause for the enhancement of the carbon coils formation by the grooves was suggested and discussed with the surface energies for the interaction between as-growing carbon elements. Finally, we could obtain the massive production yield of the carbon coils by the surface pretreatment using SiC sand papers on the several tens grooved stainless steel substrate.