• Title/Summary/Keyword: Addition reaction

Search Result 4,228, Processing Time 0.037 seconds

Synthesis and Preliminary Antimicrobial Screening of New Benzimidazole Heterocycle

  • Fahmy, H.H.;El-masry, A.;Ali Abdelsahed, S.H.
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • A series of 2-methylbenzimidazole incorporated to different heterocycles through ethyl or carbamoylethyl groups at position 1 of benzimidazole were synthesized. Also 3-(2-methylbenzimidazol-1-yl)propanoic acid hydrazide incorporated with semicarbazides and thiosemicarbazides were prepared. Moreover, the triazole 5e underwent Michael addition and alkylation reaction. Some of the newly synthesized compounds showed considerable antimicrobial activity against gram positive, negative bacteria and yeast.

  • PDF

RU486 Suppresses Progesterone-induced Acrosome Reaction in Boar Spermatozoa

  • Jang, Sun-Phil;YiLee, S.H.
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.604-608
    • /
    • 2002
  • The effects of progesterone on the acrosome reaction, as well as the effects of RU486 on the progesterone-induced acrosome reaction in capacitated boar spermatozoa, were investigated. Progesterone, a major steroid that is secreted by the cumulus cells of oocyte, clearly induced the acrosome reaction in a dose-dependent manner in capacitated boar spermatozoa, even though it failed to show similar effects in non-capacitated spermatozoa. RU486, a potent antiprogestin, significantly reduced the effects of progesterone on the progesterone-induced acrosome reaction; however, when treated alone, it showed no inhibitory effects on the acrosome reaction. The inhibitory effects of RU486 were also shown to be dose-dependent. These results imply that in addition to the well-known inducer of the acrosome reaction, zona pellucida, progesterone can also induce the acrosome reaction through its specific receptors on spermatozoa after the spermatozoa undergo capacitation.

Lewis Acid-Catalyzed Reactions of Anthrone: Preference for Cycloaddition Reaction over Conjugate Addition Depending on the Functionality of α,β-Unsaturated Carbonyl Compounds

  • Baik, Woon-Phil;Yoon, Cheol-Hoon;Koo, Sang-Ho;Kim, Ha-Kwon;Kim, Ji-Han;Kim, Jeong-Ryul;Hong, Soo-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.491-500
    • /
    • 2004
  • The Lewis acid-catalyzed reactions of anthrone with a variety of ethylenic substrates under various conditions have been studied. It has been observed that depending on kinds of ethylenic substrates and catalysts, products were varied. In particular, the $ZnCl_2$-catalyzed reaction of anthrone with ${\alpha},{\beta}$ -unsaturated ester gave bridged compounds 3 (Diels-Alder adduct type) and mono-Michael adduct 4 exclusively, while the base-catalyzed reaction gave 10,10-bis-Michael adduct as a major product independent of the amount of ethylenic substrate and base. Bridged compounds 3 were easily converted to the corresponding mono-Michael adduct 4 by a catalytic amount of base. Further Michael reaction of mono-Michael adducts with different ethylenic substrates in the presence of a catalytic amount of alkoxide gave unsymmetrical 10,10-bis Michael adducts in good or moderate yields.

A Study on the Reaction Kinetics of Nitrogen Compounds over Bimetallic Molybdenum Catalysts (이금속성 형태 몰리브덴 촉매를 이용한 질소화합물의 반응속도 연구)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2005
  • It is interesting to discover the reaction kinetics of the newly developed molybdenum containing catalysts. The dissociation/adsorption of nitrogen on molybdenum surface is known to be structure sensitive, which is similar to that of nitrogen on iron surface. The rates over molybdenum nitride catalysts are increased with the increase of total pressure. This tendency is the same as that for iron catalyst, but is quite different from that for ruthenium catalyst. The activation energies of the molybdenum nitride catalysts are almost on the same level, although the activity is changed by the addition of the second component. The reaction rate is expressed as a function of the concentration of reactants and products. The surface nature of $CO_3Mo_3N$ is drastically changed by the addition of alkali, changing the main adsorbed species from $NH_2$ to NH on the surface. The strength of $NH_x$ adsorption is found to be changed by alkali dopping.

Effect of $CO_2$ Addition on Flame Structure and NOx Formation of $CH_4-Air$ Counterflow Diffusion Flames ($CO_2$ 첨가가 $CH_4$-공기 대향류 확산화염의 구조 및 NOx 생성에 미치는 영향)

  • Lee, S.R.;Han, J.W.;Lee, C.E.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.97-108
    • /
    • 1999
  • This numerical study was to investigate the effect of $CO_2$ addition on the structures and NOx formation characteristics in $CH_4$ counterflow diffusion flame. The importance of radiation effect was identified and $CO_2$ addition effect was investigated in terms of thermal and chemical reaction effect. Also the causes of NOx reduction were clarified by separation method of each formation mechanisms. The results were as follows : The radiation effect was intensified by $CO_2$ addition. Thermal effect mainly contributed to the changes in flame structure and the amount of NO formation but the chemical reaction effect also cannot be neglected. The reduction of thermal NO was dominant with respect to reduction rate, but that of prompt NO was dominant with respect to total amount.

  • PDF

Kinetic Studies on the Addition of Potassium Cyanide to α,N-Diphenylnitrone

  • 김태린;김영호;변상용
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.712-714
    • /
    • 1999
  • The rate constants for the nucleophilic addition of potassium cyanide to α,N-diphenylnitrone and its derivatives (p-OCH3, p-CH3, p-Cl, and p-NO2) were determined by ultraviolet spectrophotometer at 25℃, and the rate equations which can be applied over a wide pH range were obtained. On the basis of pH-rate profile, adduct analysis, general base catalysis and substituent effect, a plausible mechanism of this addition reaction was proposed: At high pH, the cyanide ion to carbon-nitrogen double bond was rate controlling, however, in acidic media, the reaction proceeded by the addition of hydrogen cyanide molecule to carbon-nitrogen double bond after protonation at oxygen of a,N-diphenylnitrone. In the range of neutral pH, these two reactions occured competitively.

Studies on the Michael Addition Reaction between Secondary Amino Groups on the Silica Surface with Poly(ethylene glycol) Diacrylates (실리카 나노입자 표면에 결합된 2차 아미노기와 Poly(ethylene glycol) Diacrylate의 마이클 부가반응에 대한 연구)

  • Jeon, Ha Na;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.822-830
    • /
    • 2012
  • We used dipodal type bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify silica nanoparticles to introduce secondary amino groups on the silica surface. These N-H groups were reacted with three different molecular weights (M.W. = 258, 575, and 700) of poly(ethylene glycol) diacrylates to introduce different attached layer thicknesses on the silica surface by Michael addition reaction. After Michael addition reaction, we used several analytical techniques such as fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state $^{13}C$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy to characterize introduced structures. We found almost complete Michael addition reaction of both two acrylate groups of PDGDA with N-H groups of BTMA modified silica to form ${\beta}$-amino acid esters. Between equimolar ratio of pure BTMA and pure PEGDA reaction, only one acrylate group of two acrylate groups of PEGDA reacted with N-H groups of pure BTMA to form ${\beta}$-amino acid ester and the other remaining acrylate group can be used to form a polymer later.

Synthesis of (2,7-dibromo-9,9-dialkyl-substituted-fluorene)s for Poly(dialkylfluorene)s by Phase Transfer Catalytic Reaction

  • Kwon, Seung-Ho;Kim, Jin-Sung;Park, Ji-Ho;Yoo, Jae-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.724-727
    • /
    • 2002
  • 2,7-dibromo-9, 9-dialkyl-substituted-fluorene derivatives were prepared by the alkylation of 2,7-dibromofluorene with various alkyl groups under two-phase phase transfer catalysis (PTC) conditions, as monomers for synthesizing poly(dialkylfluorene)s. Tetra-nbutylammonium hydrogen sulfate (TBAHS) was used as a phase transfer catalyst to enhance nucleophilic substitution. In addition, NaOH in water (25M) was used as a base to generate anions. Compared to conventional alkylation using butyllithium(BuLi), the reaction using the PTC technique attained high selectivity and substantial conversion of reactants, due to the enhanced reaction rate, while the reaction was carried out under moderate conditions. An approximately 90% yield was obtained from the reaction and the reaction time was remarkably reduced. 2,7-dibromo-9,9-dihexyl-fluorene, 2,7-dibromo-9,9-dioctyl-fluorene, and 2,7-dibromo-9,9-di(2-ethylhexyl)-fluorene were effectively synthesized by phase transfer catalytic reaction.

  • PDF

Changes of Linolenic Acid Content and Reactivity during Partial Hydrogenation of Soybean Oil with and without Lecithin (레시틴의 첨가 유, 무에 따른 대두유의 수소첨가 반응성과 리놀렌산의 변화)

  • Kwon, Hye-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.41-46
    • /
    • 1995
  • Changes of fatty acid composition and reaction rate were investigated according to reaction condition during partial hydrogenation reaction of soybean oil until its iodine value decreased from 134 to 110. The reaction conditions were varied in the range of from $170^{\circ}C$ to $210^{\circ}C$ of temperature, from 1.3 atm to 4.2 atm of pressure and from 0.005% to 0.1% of nickel concentration as catalyst. Lecithin was added in soybean oil to investigate the change of reaction rate. The result of addition of lecithin showed that reaction rate decreased to from 2 to 6 times in comparison with non-additive system.

  • PDF