Lewis Acid-Catalyzed Reactions of Anthrone: Preference for Cycloaddition Reaction over Conjugate Addition Depending on the Functionality of α, β-Unsaturated Carbonyl Compounds

Department of Chemistry, Myong Ji Universith, Yong In, Kywng Ki Do 449-728. Korea
"Department of Chemistry and GNRL, Kyung Hee University, Suwon 449-701, Korea
Received January 9, 2004

Abstract

The Lewis acid-catalyzed reactions of anthrone with a variety of ethylenic substrates under various conditions have been studied. It has been observed that depending on kinds of cthylenic substrates and catalysts, products were varied. In particular, the ZnCl_{2}-catalyzed reaction of anthrone with α, β-unsaturated ester gave bridged compounds 3 (Diels-Alder adduct type) and mono-Michael adduct 4 exclusively, while the base-catalyzed reaction gave 10,10-bis-Michael adduct as a major product independent of the amount of ethylenic substrate and base. Bridged compounds 3 were easily converted to the corresponding mono-Michael adduct $\mathbf{4}$ by a catalytic amount of base. Further Michael reaction of mono-Michacl adducts with different ethylenic substrates in the presence of a catalytic amount of alkoxide gave unsymmetrical 10,10-bis Michael adducts in good or moderate yields.

Key Words: Anthrone, Lewis acid, Cycloaddition, Conjugated addition, Michael reaction

Anthrone 1 and anthracenol 2 are typical examples of keto-enol isomerization in solution (eq. 1). ' Anthracenolate ion generated from the deprotonation of anthrone by base leads to a consecutive double Michael reaction ${ }^{2}$ which is often observed with substrates containing active methylene groups, such as indanone, fluorene, or acetophenone. ${ }^{3}$ In addition to the Michael reaction of anthrone, Diels-Alder reactions of anthracenol 2 have been investigated in conjunction with 9 -substituted anthracenes. ${ }^{\dagger}$

Anthracene has been shown to have only modest activity as a diene (HOMO energy, -8.12 eV). On the other hand, 9-alkoxy-substituted anthracenes (-O -alkylated anthrone) and anthracenol, which have higher HOMO energies (-8.07 and -7.90 eV , respectively), can act as better dienes toward $\alpha, \beta-$ unsaturated carbonyl compounds in the classical Diels-Alder cycloaddition (the main MO interaction between HOMO of a diene and LUMO of a dienophile). ${ }^{5}$ Since the equilibrium constant between the tautomers anthrone and anthracenol is known to be strongly solvent-dependent ($K_{\text {cq }}-0.1$ in MeOH , 10^{-3} in CHCl_{3}, and 1.5 in DMSO), ${ }^{\text {, }}$ the successful addition
of dienophile to anthrone to give a Diels-Alder adduct has been limited. Reported attempts have involved the treatment of anthrone with a highly reactive dienophile, such as dimethyl acetylenedicarboxylate or maleic anhydride in boiling acetic acid. On the other hand, anthracenolate ion also acts as a highly reactive 1 -oxido diene. ${ }^{7}$ and has been shown to exhibit high diene reactivity in Diels-Alder reactions. For example, Meeks et al. reported that anthracenolate ion is condensed with a poor dienophile, ethylene, to give a DielsAlder adduct at high pressure and high temperature, but they did not report any other dienophiles. ${ }^{2.1}$ Recently, Rickborn demonstrated that the treatment of anthrone with a weak base gives l-oxido diene (= anthracenolate ion), leading to a Diels-Alder reaction with highly reactive dienophiles in aprotic solvent, ${ }^{8}$ while, anthracenolate ion leads to a $1.4-$ conjugate addition reaction with α, β-unsaturated carbonyl compounds in protic solvents. ${ }^{2 \pi .8}$ Thus, even though anthracenolate ion is highly capable of acting as a diene in the Diels-Alder reaction, changing the base, solvent, or dienophile can result in either cycloadduct or Michael adduct. An anthracenolate ion can also undergo the O - or C -alkylation. analogous to a phenoxide ion. ${ }^{9}$ Previous investigations led us to consider the possibility of cycloaddition reactions of anthrone with α, β-unsaturated carbonyl compounds, since the equilibrium position between the two tautomers favors anthracenol in acidic conditions, which is capable of leading to the Diels-Alder adduct. Thus, a simple α, β-unsaturated ester, methyl acrylate, was used as a model compound, since it has a moderately low activity as a dienophile. ${ }^{10}$

The condensation of methyl acrylate with anthrone was tried in the presence of a catalytic amount of the Lewis acid ZnCl_{2} in ethanol, and cycloadduct $\mathbf{3 a}$ was formed as a major product; two Michael adducts $\mathbf{4 a}$ and $\mathbf{5 a}$ were also observed in small amounts (Scheme I).

Scheme 1. Reaction of anthronc with a varicty of cthylenic substrates under various conditions.
Table 1. I ewis acid-catalyzed reactions of anthrone with a variety of ethylenic substrates under various conditions

linlry	ethylenic substrate	Lewis acid (Equiv)	solvent	time (h)	product. \% ${ }^{\text {c }}$			
					3	4	5	7
I	methyl acrylate(a)	$7 \mathrm{nCl} 1_{2} .0 .1$	IEOHI	6	85	9	3	0
2	methyl acrylate(a)	$7 \mathrm{nCl} \mathrm{I}_{2} 0.01$	I: 10	6	84	10	4	0
3	methy acryate(a)	$7 \mathrm{nI}_{2} .0 .05$	1 LOH	6	32	17	13	0
4	methyl acryate(a)	$\mathrm{AlCl} \mathrm{S}_{3} 0.05$	1 LOH	6	51	6	11	0
5	methy acrylate(a)	$p-\mathrm{TS}$ ¢ 0.1	EHOH	24	0	0	0	77
6	methyl acrylate(a)	$\mathrm{H}_{2} \mathrm{SO}_{4} 0.0 \mathrm{Ol}$	F!口1	10	0	0	0	81
7	methyl viny/ ketone(b)	$7 \mathrm{nCl} \mathrm{I}_{2}, 0.05$	İ@ll	3	0	89	0	0
8	phensil vinyl ketone(c)	$7 \mathrm{nCO} \mathrm{I}_{2}, 0.05$	Meoll	2	0	47	0	0
9	acrylonitrile(d)	$7 \mathrm{nCl} \mathrm{N}_{2} 0.05$	IMSO	6	71	0	0	0
10	phenyl vinyl sulfone(e)	$7 \mathrm{nCl} \mathrm{N}_{2} 0.05$	I)MSO	24		nor		

"Isolated yield.

Table I summarizes the results for the reactions of anthrone with a variety of ethylenic substrates under various conditions. The products were not influenced by the amounts of Lewis acid or methyl acrylate (entries 1 and 2). By reducing the amount of ZnCl_{2} to as little as $0.01 \mathrm{~mol} \%$, the cycloaddition reaction also occurred to give a similar product ratio and yield. A comparison experiment was performed with other Lewis acids AlCl_{3} and ZnI_{2} (entries 3 and 4). However, these other Lewis acids provided unsatisfactory results for the cycloaddition reaction. When mineral acid or p toluenesulfonic acid (p-]SA) was used instead of ZnCl_{2}, acid-catalyzed ether formation of anthracenol preferentially occurred to give a single product, 9-ethoxyanthracene 7 (entries 5 and 6), which is formed when anthrone is refluxed in ethanol in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ without ethylenic substrate. ${ }^{8 a}$
It should be pointed out that anthrone in the presence of Lewis acid shows two distinctive characters, diene and Michael donor, depending on the functionality of the α, β unsaturated carbonyl compounds. Recently, we reported that

1,4-conjugated addition of anthrone with α, β-unsaturated ketones proceeds to give mono-Michael adducts in the presence of ZnCl_{2}, as shown in eq. 2 (entries 7 and 8). "

The success of the mono-Michael reaction with ZnCl_{2}

Table 2. Lewis acid-catalyzed reactions of anthrone with a varicty of α, β-unsaturated esters

Entry	α, β-unsaturated esters	ZnCl_{2} (Equiv)	solvent ${ }^{\text {c }}$	time (h)	product. \% ${ }^{\text {\% }}$		
					3	4	5
1	methyl acrylate (a)	0.1	EtOH	3	85	9	3
2	ethyl acrylate (f)	0.01	EtOH	6	83	3	2
3	tert-butyl acrylate (g)	0.05	EtOH	6	61	8	0
4	2(5/h)-furanone (\mathbf{h})	0.01	EtOH	3	93	0	0
5	dimethyl fumarate (i)	0.05	DMSO	4	90	0	0
6	diethyl fumarate (j)	0.05	DMSO	2	65	0	0
7	dimethyl makate (i)	0.05	DMSO	6	56	0	0
8	diethyl malcate (j)	0.05	DMSO	24	20	0	0

"Reaction temperature in EIOH, reflux: in D.MSO, $80^{\circ}{ }^{\circ}$. ${ }^{h}$ Isolated yield.
may be explained by the equilibrium position between the tautomers, anthrone $\mathbf{1}$ and anthracenol 2, which lies towards the enol form in acidic media. Thus, the favorable anthracenol 2 reacts with methyl vinyl ketone to give the monoMichael adduct $\mathbf{4 b}$ under acidic conditions. In fact, the reactivities of methyl acrylate and methyl vinyl ketone as dienophiles are very similar (calculated I.UMO energies of -0.01 and -0.07 eV , respectively). Meanwhile, the Michael reaction should be strongly influenced by the polarity of the CC double bond, and the electronic effects of the activating groups that produce polarity decrease in the order $\mathrm{CHO}>$ $\mathrm{COR}>\mathrm{CN}>\mathrm{CO}_{2} \mathrm{R} .{ }^{12}$ Methyl vinyl ketone, which has a highly polar double bond, is capable of acting as a Michael acceptor, and thus cycloaddition to give a Diels-Alder adduct 3b would be less favorable. While the Michael adduct is often converted to the cycloadduct when subjected to the same reaction conditions for a long period, the cycloadduct was not observed despite a prolonged reaction time of 24 h . Meanwhile, methyl acrylate has moderate reactivity as a dienophile and a CC double bond with very low polarity. Therefore, it seems reasonable that the 1 ewis acid-catalyzed reaction with methyl acrylate predominantly leads to the cycloaddition.
We examined the Lewis acid-catalyzed cycloaddition reactions with moderately to highly reactive ethylenic dienophiles, including α. β-unsaturated nitrile, and sulfone (entries 9 and 10). These reactions were performed in DMSO using ZnCl 2 as the Lewis acid catalyst (typically 0.05 equiv). Reactions with acrylonitrile (entry 9) gave only Diels-Alder adduct 3d, and no trace of Michael adduct was observed. Negative results were observed with phenyl vinyl sulfone in that neither cycloadduct nor Michael adduct was produced. In fact, unsuccessful results have been reported in the Michael condensation of acetophenone with methyl vinyl sulfone. ${ }^{15}$ These results indicate that the relative activating effect of dienophiles decreases in the order nitrile $>$ ester $>$ sulfone, analogous to the case of Michael acceptor. In the present study, the success of ZnCl_{2}-catalyzed cycloaddition reaction with alkyl acrylates was truly startling compared to other catalyzed processes such as the base-catalyzed DielsAlder reaction, which gives cycloadduct when alkyl acrylate is used as a solvent. ${ }^{8 \mathrm{~b}}$ It has been well documented that the rate of the Diels-Alder reaction is generally increased by a
factor of 10^{5} with Lewis acid catalysis compared to other catalyzed thermal processes. ${ }^{14}$

Encouraged by our success with the cycloaddition with a mildly reactive dienophile, methyl acrylate, we next explored the analogous reaction with a variety of α, β-unsaturated esters. All of the $7 \mathrm{nCl}_{2}$-catalyzed cycloaddition were successful under similar conditions and provided the corresponding bridgehead alcohols in reasonable yields (Table 2).

In particular, only cycloadducts were obtained in reasonable yields with α - or β-substituted esters (entries 4-8). In attempt to examine the reaction pathway of cycloaddition with reactive ethylenic dienophiles under Lewis acid conditions, we studied the stereochemistry of cycloadducts with dialkyl fumarate and dialkyl maleate (entries 5-8). Dimethyl fumarate, which is $c a .10^{2}$ fold more reactive than methyl acrylate in other cycloaddition reactions, gave cycloadducts trons-3i in 90% yield (eq. 3).

The stereochemistry of the dienophile was retained, based on the coupling constant in ${ }^{1} \mathrm{H}$-NMR. We also observed enhanced reactivity in DMSO, since the enol form 2 is favored by about a factor of 10 in DMSO compared to protic solvent.

The cis diester dimethyl maleate was also reacted with anthrone under the same conditions. Surprisingly, this cycloaddition was not stereospecific, and we observed a 100% inversion of dienophile geometry. To confirm the isomerization of dimethyl maleate to dimethyl fumarate under Lewis acid conditions, we performed a control experiment in the absence of anthrone. No isomerization was observed, even under more vigorous conditions by changing the solvent and the amount of ZnCl_{2}. In fact. dimethyl maleate is less reactive in Diels-Alder reactions than
dimethyl fumarate. Thus, a further stereochemistry study was performed with fumaronitrile and maleonitrile, since both are more reactive than dimethyl furnarate. ${ }^{10}$ The $7 \mathrm{nCl}_{2}-$ catalyzed cycloaddition reactions of anthrone with fumaronitrile and maleonitrile gave trans cycloadduct 8 and cis cycloadduct 9 in good yields, and with different stereochemical results than diesters (eq. 4).

If we focus on the stereochemistry of cycloadducts in the $7 \mathrm{nCl}_{2}$-catalyzed reactions with dimethyl maleate, it is worth noting that while the cycloaddition pathway may occur via stepwise cycloaddition mechanisms, the two-step (Michael + Aldol) can be excluded: (a) as mentioned previously, the product ratio of $\mathbf{3}(\mathbf{4}+\mathbf{5})$ with methyl acrylate does not change during the reaction, and thus there is no evidence for the transformation of 4 to $\mathbf{3}$. (b) even the Aldol condensation of the isolated mono-Michael adduct 4 in the presence of $7 \mathrm{nCl}_{2}$ under the same conditions failed to give the cycloadduct (eq. 5), and (c) the base-catalyzed intramolecular Aldol condensation of 4 to 3 also failed, and instead 4 was isomerized to 9 -substituted anthracenol 5 (eq. 5).

Another interesting result is observed when $\mathbf{3}$ is allowed to react with NaOMe in methanol at room temperature. Since the formation of the bridgehead alcohol $\mathbf{3}$ was promoted by $7 \mathrm{nCl} 2_{2}$, it was thought that the ring-opening reaction would

Scheme 2

Thus, the retro Diels-Alder reaction for bridgehead alcohols 3 prepared from α, β-unsaturated compounds would not be expected to occur via an oxido group generated from treatment with a base in alcohol. In fact, to accelerate the retro Diels-Alder reaction by an oxido substituent, we must consider the dramatic loss of basicity, i.e., the basicity of 3^{-} and an anthracenolate ion at the oxygen atom, as a powerful driving force. ${ }^{\text {|sb }}$ The obvious resonance structures of anthracenolate ion suggest that the negative charge resides mainly on the ring carbon in protic solvents, since it acts as a Michael donor. Thus, the dramatic loss of basicity of 3^{-}and of an anthracenolate ion would not to be expected to oceur in protic solvents.
We mext considered the consecutive reactions of monoMichael adducts 4 with different ethylenic substrates to synthesize the various unsymmetrical 10.10-disubstituted anthrones 11. The reaction of $4\left(\mathrm{E}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CO}_{2} \mathrm{Et}\right.$ and COMe) with ethylenic carbonyl compounds ($\mathrm{E}^{2}=\mathrm{CO}_{2} \mathrm{Me}$. $\mathrm{CO}_{2} \mathrm{Et}$ and COMe in case A) in the presence of LiHMDS in

THF solvent gave the corresponding unsymmetrical $10,10-$ disubstituted anthrones 11a, 11b, 11c (eq. 6). However, in case B , the reaction of $\mathbf{4}\left(\mathrm{I}^{\prime}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CO}_{2} \mathrm{Ct}\right.$ and COMe$)$ with acrylonitrile $\left(\mathrm{E}^{2}=\mathrm{CN}\right)$ as an ethylenic substrate under the same reaction conditions gave cycloadduct $\mathbf{1 0}$. The ringopening of the cycloadduct $\mathbf{1 0}$ to the corresponding unsymmetrical bis-Michael adduct II was also effected by treatment with a catalytic amount of NaOMe at room temperature.

A series of the cross-coupling reactions were performed in which either α, β-unsaturated ester, ketone or nitrile was allowed to react the cycloaddition reactions followed by the ring-openings (Table 3).
To compare the reactivities of anthrone under two distinctive conditions, we examined a series of α, β-unsaturated carbonyl, nitrile and sulfone compounds under basic conditions (eq. 7).

The results of these condensation reactions are summarized in Table 4. The base-catalyzed reactions of anthrone with ethylenic substrates gave the bis-Michael adduct $\mathbf{1 2}$ independent of the functional group by way of consecutive double 1,4-conjugated addition. We also found that the condensation reaction proceeded using both catalytic (0.02

Table 3. Formation of cross-coupled anthrones II via the consceutive cycloaddition and ring-opening reactions

Entry	$\begin{gathered} \text { Case } \\ \text { (equiv) } \end{gathered}$	4	$\underset{\mathrm{F}^{2}}{\mathrm{CH}_{2}=\mathrm{ClH}}$	reatcion time	$\begin{gathered} 10^{\prime \prime} \\ \text { Yield } \% \end{gathered}$	11		$\begin{gathered} 111^{6} \\ \text { yield } \% \end{gathered}$
		5^{1}				L^{\prime}	E^{2}	
1	A	$\mathrm{CO}_{2} \mathrm{Mc}$	COMc	10h	-	$\mathrm{CO}_{2} \mathrm{Mc}$	COMe	30 (a)
2	A	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{3} \mathrm{Et}$	10h	-	$\mathrm{CO}_{2} \mathrm{Mc}$	$\mathrm{CO}_{2} \mathrm{Et}$	57 (b)
3	A	$\mathrm{CO}_{2} \mathrm{Et}$	COMc	5 h	-	$\mathrm{CO}_{2} \mathrm{Et}$	COMe	44 (c)
4	A	COMc	$\mathrm{CO}_{2} \mathrm{Mc}$	10h	-	COMe	$\mathrm{CO}_{2} \mathrm{Me}$	45 (a)
5	A	COMe	$\mathrm{CO}_{3} \mathrm{Et}$	6 h	-	COMe	$\mathrm{CO}_{2} \mathrm{Et}$	41 (c)
6	B	$\mathrm{CO}_{2} \mathrm{Mc}$	CN	$\begin{aligned} & 3 \mathrm{~h} \\ & 4 \mathrm{~h}^{c} \end{aligned}$	85 (d)	$\mathrm{CO}_{2} \mathrm{Mc}$	CN	98 (d)
7	B	COMe	CN	$\begin{gathered} 2 \mathrm{~h} \\ 20 \mathrm{minc} \end{gathered}$	72(e)	COMC	CN	98 (e)
8	B	$\mathrm{CO}_{2} \mathrm{Et}$	CN	$\begin{gathered} 2 \mathrm{~h} \\ 10 \mathrm{~h} \end{gathered}$	$84(1)$	$\mathrm{CO}_{2} \mathrm{Et}$	CN	82 (f)

[^0]equiv.) and stoichiometric amounts of sodium alkoxide to produce the bis-Michael adducts 12 in similar yields. In particular, the consecutive double Michael reaction of anthrone with α, β-unsaturated esters in the presence of base occurred to give only bis-Michael adducts 12 in fairly high yields (entries 1 and 2). The formation of bis-Michael adduct is independent of the amount of ester used. For example, 0.5 equiv of methyl acrylate was treated with 1.0 equiv of anthrone (1) in the presence of 0.1 equiv of NaOMe to give 21% of $12 a$ and 78% of unreacted anthrone (1). None of the mono-Michael adduct 13a was formed. We followed the condensation reactions by GLLC analysis and H-NMR, which showed no evidence for the formation of mono-Michael adduct. The decrease in anthrone is counterbalanced by the appearance of bis-Michael adduct, the concentration of which steadily increase until all of the anthrone was consumed.
The anthracenolate ion reacts with α, β-unsaturated compounds and then undergoes a proton shift to give the more stable anthracenolate ion $\mathbf{1 3}^{-}$. Presumably, $\mathbf{1 3}^{-}$is more reactive towards ethylenic compounds than anthracenolate ion, and this reaction readily proceeds to give the bisMichael adduct 12, as shown in Eq. (7). We recently reported the sodium alkoxide-catalyzed consecutive double Michael reaction with a variety of α, β-unsaturated ketones (entries 4-6). ${ }^{11}$ In fact. limited examples of α, β-unsaturated carbonyl compounds, such as methyl acrylate, methyl vinyl ketone and acrylonitrile, have been reported in the basecatalyzed Michael reactions of anthrone. ${ }^{243}{ }^{3,8 b}$ Various alkenes and other reaction conditions have not been reported at all. In contrast to the unsuccessful reaction of the anion of acetophenone with the mildly reactive Michael acceptor phenyl vinyl sulfone, ${ }^{13}$ the anthracenolate ion in ethanol gives the bis-Michael adduct $\mathbf{1 2 h}$ in high yield (entry 8). For α, β-unsaturated compounds with α, β-substituents (entries 9 to 12), no bis-Michael adducts were observed regardless of the amounts of substrates and NaOCH_{3}, and only mono 10substituted anthrones ($\mathbf{1 3 i}, \mathbf{1 3} \mathbf{j}, \mathbf{1 3 k}, \mathbf{1 3 I}$) were observed in reasonable yields.

R a. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$ Me. b. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$ Ft. c. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Ph}$. d. $\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{ZL}$ e. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}$,
f. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{Cl}_{2} \mathrm{Cl}_{2} .2 . \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(=0) \mathrm{Ph}$.
h. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN} . \mathrm{i} . \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{Ph}$. j. $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Mc}$.
k. $\mathrm{CH}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$. i. $\left.\square=0 . \mathrm{m}.\right\rangle=0$

In conclusion, the Lewis acid-catalyzed reaction of anthrone with $\alpha . \beta$-unsaturated ester gave bridged compounds (Diels-Alder adduct type), in which the ring could easily be opened by a catalytic amount of base, and mono-Michael adduct exclusively, while the base-catalyzed reaction gave 10.10-bis-Michael adduct as a major product independent of

Table 4. Base-catalyzed consecutive conjugated addition of anthrone with ethylenic substrates

Entry	ethylenic substrate	Conditions ${ }^{\text {s }}$		product. \%	
		base ${ }^{\text {a }}$	time (h)	12	13
1	methyl acrylate (a)	NaOMe	5	91	0
	ethylacrylate (b)	NaOI	4	93	0
3	ethyl methacrylate (c)	NaOI	2	51	0
4	methyl vinyl kelone (d)	NaOMe	5	89	5
	ethyl vinyl ketone (e)	NaOMe	4	88	tr
	phenyl viny] ketone (f)	NaOMe	3	50	0
7	acrylonitrile (g)	NaOMe	5	96	0
8	phenyl vinyl sulfone (h)	NaOMe	48	90	0
9	methyl crotonate (i)	NaOMe	2	0	53
	methyt $i-3$-methoxyacryate (j)	NaOMe	2	0	45
	cyclopentenone (k)	NaOMe	3	0	85
12	cyclohexenone (I)	NaOMe	3	0	80

"Reaction mixtures were relluxed, except with phenyl viny] sulfone (at room temperature). Catalytic amounts (approx. $0.1 \mathrm{~mol} \%$) of base were used. "Isolated yjeld.
the amount of ethylenic substrate and base. Further Michael reaction of mono-Michael adducts with different ethylenic substrates in the presence of a catalytic amount of alkoxide gave unsymmetrical 10,10-bis Michael adducts.

Experimental Section

NMR spectra were recorded on a Varian Gemini- 200 spectrometer in CDCl_{3}. IR spectra were obtained using a Perkin-EImer Paragon 1000 spectrometer. Mass spectra were obtained at a 70 eV via GC-MS coupling. GC analyses were performed using a capillary column ($25 \mathrm{~m} \times 0.2 \mathrm{~mm}$ i.d.). Melting points were determined on a Mel-Temp II apparatus and are uncorrected. All reagents were used as purchased and solvents were purified by conventional methods. All conjugated addition reactions were performed under dry nitrogen.

General procedure for the Lewis acid-catalyzed monoMichael reaction of anthrone. A solution of anthrone (500 $\mathrm{mg}, 2.57 \mathrm{mmol}$) in methanol (5.0 mL) was treated with methyl acrylate ($1.06 \mathrm{~mL}, 11.8 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(5.0 \mathrm{mg}$, 0.04 mmol). The mixture was refluxed for 3 h and then concentrated under vacuum. The residue was extracted with methylene chloride, and then washed with brine. The organic phase was dried over MgSO_{4}, filtered, and concentrated. Chromatography (10% EtOAc in n-hexane) gave 10 -($2^{\prime}-$ methoxycarbonyl)ethyl-9 (10 H)-anthracenone $4 \mathbf{4}$ ($26 \mathrm{mg}, 4$ $\%$) as an oil. methyl 9,10-dihydro-9-hydroxy-9.10-ethano-anthracene-11-carboxylate 3a ($592 \mathrm{mg} .83 \%$) as a white solid, and 10-(2'methoxycarbonyl)ethyl-9-hydroxyanthracene 5 a ($15 \mathrm{mg}, 2 \%$) as an oil.

Compound 3a: TLC $R_{f} 0.48$ (25% EtOAc in n-hexane); mp 121-123 ${ }^{\circ} \mathrm{C}$; [R (KBr) 3429, 1696, 1458, 1309. 1261 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.15(\mathrm{~m}, 6 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=$ $5.4 \mathrm{~Hz}, \mathrm{lH}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J$
$=1.2$ and 7.7 Hz .2 H$){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta 176.3 .144 .8$. $143.4,128.0,127.5,124.7,124.5 .122 .6 .122 .0 .78 .4,53.8$. 49.9. 44.4. 33.0. MS mz $281\left(\mathrm{M}^{+}+1\right)$. 250 . 194, $165,139$. 82.

Compound 4a: TLC $R_{f} 0.44$ (25% EtOAc in n-hexane): IR (KBr) 1735, 1665. 1601, 1463. $1315 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .7 .66-7.57(\mathrm{~m} .3 \mathrm{H}) .7 .51-$ $7.42(\mathrm{~m} .3 \mathrm{H}), 4.42(\mathrm{t} . J=5.3 \mathrm{~Hz} . \mathrm{H}) .3 .50(\mathrm{~s} .3 \mathrm{H}), 2.40-$ $2.29(\mathrm{~m}, 2 \mathrm{H}) .1 .88(\mathrm{t}, J=7.9 \mathrm{~Hz} .2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 183.0, 174.8, 145.4. 134.7, 134.0. 129.7, 129.1. 128.9, 53.1. $42.8,37.8 .30 .6 ; \mathrm{MS} \mathrm{mz} 281\left(\mathrm{M}^{+}+1\right) .250 .195,163,139$. 115.

Compound 5a: TLC $R_{f} 0.16$ (25% EtOAc in n-hexane): IR (KBr) 3384, $17 \mathrm{II} .1664,1601.1318 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}) .8 .14(\mathrm{~s}, \mathrm{IH}) .7 .87(\mathrm{~d} . J=$ $9.1 \mathrm{~Hz} .2 \mathrm{H}) .7 .74(\mathrm{t} . J=9.3 \mathrm{~Hz} .2 \mathrm{H}) .7 .61(\mathrm{t}, J=8.2 \mathrm{~Hz} .2 \mathrm{H})$. $3.43(\mathrm{~s} .3 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 2 \mathrm{H}) .1 .81-1.73(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.8 .144 .2 .135 .7,133.9,130.4,129.2$. 127.1, 53.3. 40.4, 30.0, MS mz $280\left(\mathrm{M}^{+}\right) .248,191,178$. 136.

Data of compound 3b and 3c have been reported in reference 11 .

Compound 3d: TLC $R_{f} 0.24$ (2.5% EtOAc in benzene): $\operatorname{mp} 212-215^{\circ} \mathrm{C}$; IR (KBr) 3404, 2243. 1458. 1246, 1239 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{\mathfrak{3}}\right) \delta 7.62(\mathrm{~d} . J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d} . J$ $=6.4 \mathrm{~Hz} .1 \mathrm{H}), 7.38-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.46(\mathrm{~s}$. $1 \mathrm{H}), 3.10(\mathrm{dd}, J=4.5$ and 10.5 Hz .1 H$), 2.28(\mathrm{t}, J=14.0 \mathrm{~Hz}$. $1 \mathrm{H}), 1.89-1.30(\mathrm{~m}, \mathrm{IH}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 144.6,142.8$. $142.7,142.6 .127 .9,127.1,127.0 .124 .5,122.9,122.8$. $121.8,77.3,42.5,37.1$. 35.3 . MS $m=248\left(\mathrm{M}^{-}+\mathrm{I}\right), 208.193$. 165. 139.

Compound 3f: TLC $R_{f} 0.45$ (25% EtOAc in n-hexane): mp 107-108 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3448, 1718. 1690. 1450. 1258. $1186 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.69(\mathrm{~d} . J=8.7 \mathrm{~Hz}, \mathrm{lH})$. 7.56 (d. $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.54(\mathrm{~m}, 6 \mathrm{H}), 5.29(\mathrm{~s} .1 \mathrm{H})$. $4.31(\mathrm{t} . J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-3.98(\mathrm{~m}, 2 \mathrm{H}) .2 .92-2.83(\mathrm{~m}$. $2 \mathrm{H}), 2.26-2.17(\mathrm{~m} .2 \mathrm{H}), 1.12(\mathrm{t} . J=7.2 \mathrm{~Hz} .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 175.7,144.7,143.6 .143 .5,143.2,127.9 .127 .8$. $127.5,127.4 .124 .5$. $124.4 .122 .5,122.0,62.9,50.0 .44 .3$. 33.8, 15.6; MS mz $295\left(\mathrm{M}^{-}+1\right), 195.166,139.82$.

Compound ff : TLC $R_{f} 0.34$ (25% EtOAc in n-hexane): IR (KBr) 1732, 1665. 1602, 1463. $1315 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}) .7 .66-7.43(\mathrm{~m} .6 \mathrm{H}) .4 .43$ $(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{q} . J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.29(\mathrm{~m}$. $2 \mathrm{H}), 1.89-1.81(\mathrm{~m} .2 \mathrm{H}), 1.15(\mathrm{t} . J=7.1 \mathrm{~Hz} .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 185.9,174.3,145.4$. $134.8,133.9,129.8$. 129.0. $128.8,82.0 .42 .8 .37 .7,30.8 .15 .7$; MS $m=295\left(\mathrm{M}^{+}+1\right) .265$. $250.208,194.178,166.139$.
Compound 5f: TLC $R_{f} 0.25$ (25% EtOAc in n-hexane): IR (KBr) 3304. 1613, $1582.1284,1228,1209 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{\mathrm{j}}\right) \delta 8.32(\mathrm{~d}, J=7.7 \mathrm{~Hz} .2 \mathrm{H}) .8 .00(\mathrm{~s} .1 \mathrm{H}), 7.88$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t} . J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t} . J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}) .3 .88(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .2 .34(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$. $1.76(\mathrm{t} . J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .1 .09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.4,144.2,135.7$. 135.3, 134.0, 130.4. 129.2. 128.8, 127.1. 62.2, 40.3. 30.4. 15.0. MS mz $295\left(\mathrm{M}^{+}+1\right)$. 265. 210, 181. 152, 126. 95 .

Compound 3g: TLC $R_{f} 0.38$ (benzene); mp 117-119 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3373. $1689,1485.1315,1253 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d} . J=6.9 \mathrm{~Hz} .1 \mathrm{H}) .7 .58(\mathrm{~d} . J=6.6 \mathrm{~Hz} . \mathrm{lH})$, $7.33-7.17(\mathrm{~m} .6 \mathrm{H}), 5.37(\mathrm{~s} .1 \mathrm{H}) .4 .32(\mathrm{t} . J=2.7 \mathrm{~Hz} .1 \mathrm{H})$, $2.82(\mathrm{dd} . J=4.3$ and 10.2 Hz .1 H$) .2 .35(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.29(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) .2 \cdot 16-2.03(\mathrm{~m}, 1 \mathrm{H}) .1 .33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 174.5$. $144.8 .144 .0 .143 .7,143.1,127.9$. 127.8, 127.4. 127.3. 124.6. 124.2. 122.5, 122.1, 84.5.78.7, 50.6. 44.3. 33.8, 30.5; MS $m=323\left(\mathrm{M}^{-}+1\right), 267.250 .232$. 207. 193. 165.

Compound 4g: TLC $R_{f} 0.23$ (benzene); IR (KBr) 1727 , 1666. 1602, 1462. 1368, 1315. $1147 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.28(\mathrm{~d} . J=7.7 \mathrm{~Hz} .2 \mathrm{H}) .7 .59-7.39(\mathrm{~m}, 6 \mathrm{H}) .4 .37(\mathrm{t}, J=5.0$ Hz . H). $2.24-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 2 \mathrm{H}) .1 .33(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 186.0. 173.8. 145.7. 134.6, 134.0, $129.8,129.0,128.8$. 127.7. 127.6, 127.2. 122.5. 122.2, 122.1, 82.0, 42.9.37.9.32.0, 29.8: MS mz $323\left(\mathrm{M}^{+}+1\right) .267$. 250. 232. 207, 195. 163.

Compound 3h: TLC $R_{f} 0.31$ (benzene); mp $156-158^{\circ} \mathrm{C}$ (lit ${ }^{13}: 154-158^{\circ} \mathrm{C}$): IR (KBr) 1772. 1670. $1599,1312 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.31-8.26(\mathrm{~m} .2 \mathrm{H}), 7.63-7.39(\mathrm{~m} .6 \mathrm{H})$, $4.25(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d} . J=6.0 \mathrm{~Hz} .2 \mathrm{H}) .2 .82(\mathrm{q}, J$ $=7.9 \mathrm{~Hz} .1 \mathrm{H}) .2 .39-2.34(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 183.0, 176.8, 143.1. 142.6. 134.6, 134.5. 133.8. 130.1, 129.9. 129.7. 129.5, 128.2. 71.7. 48.1. 46.6. 34.3. MS mz $279\left(\mathrm{M}^{+}+\mathrm{l}\right) .193,165.139,115$.

Compound trans-3i: TLC $R_{f} 0.23$ (2.5\% EtOAc in benzene): mp 241-244 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 3470,1735.1459 .1293$, $1216 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.74-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.62-$ $7.57(\mathrm{~m} .1 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}) .7 .25-7.18(\mathrm{~m} .4 \mathrm{H}), 5.40(\mathrm{~s} .1 \mathrm{H})$, $4.74(\mathrm{~d} . J=2.6 \mathrm{~Hz}, \mathrm{IH}) .3 .68(\mathrm{~s}, 3 \mathrm{H}) \cdot 3.52 \cdot 3.50(\mathrm{~m}, 2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 175.1$ 173.7. 144.4. 144.0, 141.6, 139.9. 130.0, 128.2. 128.1. 125.4. 125.0. 122.7, 122.2, 78.3. 54.2, 54.1. 52.9. 50.9, 47.3; MS $m=339\left(\mathrm{M}^{-}+1\right), 322.265 .219$. 194. 165. 127.

Compound trans-3j: TLC $R_{f} 0.27$ (2.5\% EtOAc in benzene): mp 73-75 ${ }^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 3497,1738.1712 .1459$, 1369. 1231, $1205 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d} . J=7.0$ $\mathrm{Hz} .1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, \mathrm{lH}) .7 .23-$ $7.15(\mathrm{~m} .5 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}) .4 .69(\mathrm{~s}, \mathrm{IH}) .4 .10-4.30(\mathrm{~m} .4 \mathrm{H})$, 3.47 (s. 2 H). $1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .1 .11(\mathrm{t} . J=7.1 \mathrm{~Hz}$. $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 174.5 .173 .2,144.3,144.1 .141 .6$, 139.9, 128.2. 128.1, 128.0. 125.4, 125.0. 122.5, 122.2, 63.3, 62.9. 62.8, 52.9, 50.7, 47.3. 15.9. 15.6: MS $m z 367\left(\mathrm{M}^{-}+1\right)$, 338.322. 219, 194. 165, 127

Formation of cross-coupled anthrones 11. General procedure for the direct fomation of unsymmetrical 10.10 disubstituted anthrone derivatives: (Reaction of $10-\mathrm{mono}$ Michael adduct with alkenes under LiHMDS conditions in Case a).

LiHMDS (1.6 M THF solution of lithum bis(tmethylsilyl)amide) was added dropwise to a misture of mono-Michael adduct $+(\mathrm{l}$ eq) and ethylenic carbonyl compounds (ethyl acrylate. methyl acrylate and methyl vinyl ketone, 2.5 eq) in freshly distilled THF (0.1 M) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up to rt and then stirred until the reaction was completed. Next, water was poured into the
flask. which was then extracted with methylene chloride. The separated organic layer was washed with a brine solution. dried over sodium sulfate and purified by flash column chromatography to give unsymmetrical 10.10 disubstituted anthrones (11).

Compound 11a: Yield 30\%; TLC $\mathrm{R}_{\mathrm{f}} 0.63$ (EtOAc: nHexane $=1: 1) ; \mathrm{mp} 143-145^{\circ} \mathrm{C}$; IR (KBr) 2947, 1732. 1661, 1602, 1457, 1369, 1322, 1280, $1175 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}: \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.58-1.71(\mathrm{~m} .4 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H})$. $2.51-2.65(\mathrm{~m} .4 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 7.26-7.53(\mathrm{~m}, 2 \mathrm{H}) .7 .61-$ $7.71(\mathrm{~m}, 4 \mathrm{H}) .8 .41(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz : $\left.\mathrm{CDCl}_{3}\right) \delta 183.0,172.9,145.1,134.2,132.4$. 127.5. 127.3. $125.8,51.3 .44 .4,39.7 .38 .3 .38 .1,29.7 .29 .0$, MS mz 380 $\left(\mathrm{M}^{+}\right), 301,291.279,263$
Compound 11b: Yield 57\%; TLC $\mathrm{R}_{\mathrm{f}} 0.60$ (EtOAc : nHexane $=1: 1$): mp 97-100 ${ }^{\circ} \mathrm{C}:$ IR (KBr) 1735, 1659. 1600. 1457, 1372, 1323. $1188,1031 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (200 MHz : $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.64(\mathrm{~m} .4 \mathrm{H})$. $2.62(\mathrm{t} . J=7.8 \mathrm{~Hz}, 4 \mathrm{H}) .3 .44(\mathrm{~s} .3 \mathrm{H}), 3.89(\mathrm{q} . J=7.1 \mathrm{~Hz}$. $2 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.7 \mathrm{I}(\mathrm{m}, 4 \mathrm{H}) .8 .40(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ 183.0, 172.7. 144.8. 134.3, 133.6. 128.2. 127.6. 127.0, 125.8, 60.3, 51.4. 44.7. 39.7, 39.6. 29.2. 29.1, 13.9. MS $m z 380\left(\mathrm{M}^{+}\right), 349.293$. 279. 219.

Compound 11c: Yield 44\%: TLC $\mathrm{R}_{\mathrm{f}} 0.30$ (EtOAc : n1Hexane $=1: 1$): mp $122-123^{\circ} \mathrm{C} ;$ IR (KBr) 1712. 1661, 1321 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}: \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.08(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .1 .51-\mathrm{I} .71(\mathrm{~m} .4 \mathrm{H}), 1.80(\mathrm{~s} .3 \mathrm{H}), 2.51-2.65(\mathrm{~m}, 4 \mathrm{H})$. $3.89(\mathrm{q}, J=7.2 \mathrm{~Hz} .2 \mathrm{H}), 7.45-7.53(\mathrm{~m} .2 \mathrm{H}), 7.61-7.75(\mathrm{~m}$. $4 \mathrm{H}), 8.41(\mathrm{~d}, J=7.8 \mathrm{~Hz} .2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}: \mathrm{DMSO}$) δ $144.1,142.7 .142 .5,142.3,126.5 .126 .4,125.5,121.4$. 121.0, 120.4, 75.1, 42.9.38.3, 36.8, 36.5. 30.0. 23.0. MS mz $380\left(\mathrm{M}^{-}\right), 319.307,293.263$

General experimental procedure in Case B. LiHMDS (1.6 M THF solution of lithium bis(tmethylsilyl)amide) was added dropwise to a mixture of mono-Michael adduct 4 (1 eq) and acrylonitrile (2.5 eq) in freshly distilled THF (0.1 M) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to wann up to rt and stirred. After the reaction was completed. water was poured into the flask, which was then extracted with methylene chloride. The separated organic layer was washed with brine, dried over sodium sulfate and purified by recrystallization to give unsymmetrical 9.10-bridged anthrones (10).
Compound 10d: Yield 85\%; TLC $R_{f} 0.26$ (Chloroform methanol $=13: 1$) $\mathrm{mp} 189-191^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) 3427.2256$. 1737, $1456,1175 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}: \mathrm{CDCl}_{3}$) δ (ppn) 1.88 (dd, $J=7.2 \mathrm{~Hz}, 4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{t} . J=11.7 \mathrm{~Hz}$. 1H), 2.73-2.93 (m. 4H). 3.09 (q. $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}) .3 .34$ (s. $1 \mathrm{H}-\mathrm{OH}), 3.81(\mathrm{~s} .3 \mathrm{H}) .7 .21-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.57(\mathrm{~d} . J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}) .7 .61($ d. $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz : DMSO-d d_{6}) $\delta 173.5$. $144.1,142.3 .142 .2,126.4 .125 .5,125.4$. $121.5,121.2,120.9,120.5,75.0 .54 .9,51.6 .42 .7 .36 .4,29.1$. 24.9: MS $m=333\left(\mathrm{M}^{+}\right) .302,293.279 .246$.

Compound 10e: Yield 84\%: TLC $R_{f} 0.33$ (EtOAc : nHexane $=1: 1$) $\mathrm{mp} 184-186^{\circ} \mathrm{C}$; IR (KBr) 3397, 2253. $1735,1456,1178 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}: \mathrm{CDCl}_{3}$) δ (ppm) $1.34(\mathrm{t} . J=7.3 \mathrm{~Hz} .3 \mathrm{H}) .1 .88$ (dd. $J=12.5 \mathrm{~Hz} .4 .9 \mathrm{~Hz}$.
$1 \mathrm{H}) .2 .12(\mathrm{t} . J=11.7 \mathrm{~Hz} .1 \mathrm{H}), 2.73-2.93(\mathrm{~m}, 4 \mathrm{H}), 3.09(\mathrm{q}, J$ $=4.9 \mathrm{~Hz} . \mathrm{IH}) .3 .40(\mathrm{~s}, 1 \mathrm{H}-\mathrm{OH}), 4.26(\mathrm{q}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H})$. $7.21-7.35(\mathrm{~m} .6 \mathrm{H}) .7 .57(\mathrm{~d} . J=5.2 \mathrm{~Hz}, \mathrm{IH}) .7 .61(\mathrm{~d}, J=4.6$ $\mathrm{Hz} . \mathrm{IH}$) ${ }^{13} \mathrm{C}$ NMR (75 MHz ; DMSO-d d_{6}) $\delta 173.4 .142 .4$, $142.0,141.8,140.8$. 127.1. 127.0, 126.3. 126.1. 121.2, $120.8,120.2,120.0 .76 .05,61.0,43.3,37.5 .36 .7,30.0 .25 .4$, 14.2; MS mz $347\left(\mathrm{M}^{-}\right), 303.293 .265,246$.

Compound 10f: Yield 72\%: TLC $R_{f} 0.63$ (EtOAc : nHexane =1:1) $\mathrm{mp} 197-199^{\circ} \mathrm{C} ;$ IR (KBr) 3396.3071. 2935, 2252. 1713. 1636. $1457 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}: \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{dd} . J=12.6 \mathrm{~Hz} .4 .9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.10(\mathrm{t} . J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.84(\mathrm{~m} .2 \mathrm{H}) .2 .92-2.95(\mathrm{~m}$, $2 \mathrm{H}) .3 .09(\mathrm{q}, J=4.9 \mathrm{~Hz}, \mathrm{lH}), 3.28(\mathrm{~s}, 1 \mathrm{H}-\mathrm{OH}), 7.21-7.35$ $(\mathrm{m} .6 \mathrm{H}), 7.57(\mathrm{~d} . J=5.2 \mathrm{~Hz}, \mathrm{IH}) .7 .61(\mathrm{~d} . J=4.6 \mathrm{~Hz} . \mathrm{lH})$: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 183.1, 172.6. 145.3. 134.3, $132.5,127.6,127.4,125.9,60.3,44.6,39.7 .38 .4,38.3 .29 .8$, 29.3. 14.0: MS mz $333\left(\mathrm{M}^{+}\right) .317,302,293.279,246$.

General procedure for the formation of unsymmetrical 10,10 -disubstituted anthrone derivatives (11) from the unsymmetrical 9,10-bridged anthrones (10). A catalytic amount of NaOEt (21 wt\% solution ethanol) was added to a solution of compound $\mathbf{1 0}$ in ethanol $(0.03 \mathrm{M})$. The mixture was refluxed and. after the reaction was completed, allowed to cool down to $0^{\circ} \mathrm{C}$. The reaction mixture was quenched with water. extracted with dichloromethane. washed with brine. dried over sodium sulfate and purified to give the corresponding products 11 .

Compound 11d: Yield 98\%: TLC $R_{f} 0.56$ (EtOAc : nHexane $=1: 1$) $\mathrm{mp} 121-124{ }^{\circ} \mathrm{C}: \mathrm{IR}(\mathrm{KBr}) 3445,2263$, 1729. 1660. 1601. 1458. 1324. $1172 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 1.54-1.63 (m, 4 H$), 2.57-2.70(\mathrm{~m}$, $4 \mathrm{H}) .3 .45(\mathrm{~s} .3 \mathrm{H}), 7.50-7.65(\mathrm{~m} .4 \mathrm{H}), 7.72-7.80(\mathrm{~m} .2 \mathrm{H})$, 8.42 (d. $J=7.9 \mathrm{~Hz} .2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ $182.5,172.8,143.3$. 134.7. 132.6, 128.1. 128.1. 125.6, $118.7,51.6,44.8,40.5$. 39.5. 28.9. 12.5; MS mz $333\left(\mathrm{M}^{-}\right)$, 302.293. $279,246$.

Compound 11e : Yield 82%; TLC $R_{f} 0.66$ (EtOAc : nHexane $=1: 1$) $: \mathrm{mp} 92-95^{\circ} \mathrm{C} ;$ IR (KBr) 3432.2247. 1676 cm^{-1} : ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}: \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.59-1.72(\mathrm{~m}$, $4 \mathrm{H}) .1 .81,(\mathrm{~s} .3 \mathrm{H}) .2 .50-2.66(\mathrm{~m}, 4 \mathrm{H}) .7 .55-7.63(\mathrm{~m}, 4 \mathrm{H})$, $7.71-7.75(\mathrm{~m} .2 \mathrm{H}) .8 .43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 143.7$. $134.8,132.6$. 128.1, 128.0. 125.6, 44.6. 40.6, 38.2. 38.0. 29.8. 12.6: MS $m=333\left(\mathrm{M}^{+}\right) .317$, 302.293. $279,246$.

Compound 11f: Yield 98\%; TLC $R_{f} 0.55$ (EtOAc : nHexane $=1: 1$) $\mathrm{mp} 117-120^{\circ} \mathrm{C}: \mathrm{IR}(\mathrm{KBr}) 1622,1601$, 1459. $1324 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.09$ (t. $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .1 .54-1.63(\mathrm{~m}, 4 \mathrm{H}) .2 .57-2.71(\mathrm{~m}, 4 \mathrm{H})$. 3.90 (q. $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.66(\mathrm{~m}, 4 \mathrm{H}) .7 .72-7.81(\mathrm{~m}$, $2 \mathrm{H}) .8 .42$ (d. $J=7.97 \mathrm{~Hz} .2 \mathrm{H}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $\delta 172.4$. 143.4. 134.7. 128.1. 128.1, 125.6, 76.6. 60.5. 40.6, 39.4.29.1, 13.9. 12.5; MS $m=333\left(\mathrm{M}^{+}\right), 303.293,246$.

General procedure for the base-catalyzed Michael reaction; formation of bis-Michael adducts (12a-12h) and/or mono-Michael adducts (12i-121). A mixture of antlurone ($500 \mathrm{mg}, 2.57 \mathrm{mmol}$). methyl acrylate (1.05 mL , 11.58 mmol) and sodium methoxide (23 mg .0 .34 mmol) in
methanol (5.0 mL) was refluxed for 5 h and then concentrated under reduced pressure. The residue was chromatographed over silica gel ($10 \% \mathrm{EtOAc}$ in n-hexane) to give compound 12a ($856 \mathrm{mg}, 91 \%$) as a white solid.

Compound 12a(Bis-Michael adduct): TLC $R_{f} 0.3$ (10% EtOAc in n-hexane); mp $116-118^{\circ} \mathrm{C}$: $\mathrm{IR}(\mathrm{KBr}) 1736,1668$. $1324,1196 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHZ} ; \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~d} . J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}) .7 .71-7.52(\mathrm{~m}, 2 \mathrm{H}) .7 .51-7.46(\mathrm{~m}, \mathrm{IH}) .3 .42(\mathrm{~s}$. $3 \mathrm{H}), 2.65-2.57$ (m. 2H). 1.59-1.54 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHZ}: \mathrm{CDCl}_{3}$) $\delta 184.6,174.7$. 146.4. 135.9. 134.9. 134.3. 129.3, 129.1, 127.5, 53.1. 46.4. 41.4, 30.7, MS mz 367 $\left(\mathrm{M}^{+}+\mathrm{l}\right), 336.304,280,220.189$.
Compound 12b(Bis-Michael adduct): TLC $R_{f} 0.42$ (25 \% EtOAc in n-hexane): mp $109-111{ }^{\circ} \mathrm{C}$: IR (KBr) 1734. 1660, 1601. 1458, 1324. $1187 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $8.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) .7 .71-7.52(\mathrm{~m} .2 \mathrm{H}) .7 .52-7.27(\mathrm{~m}$. $1 \mathrm{H}), 3.90(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .2 .65-2.57(\mathrm{~m} .2 \mathrm{H}), 1.61-1.53$ (m. 2H). 1.09 (t. $J=7.1 \mathrm{~Hz} .3 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $184.6,174.3,146.6 .135 .9,134.3 .129 .3,129.0 .127 .9,61.9$. $46.4,30.0 .15 .6$, MS mz $395\left(\mathrm{M}^{+}+1\right) .350 .294,248,220$. 190.

Compound 12c(Bis-Michael adduct): TLC $R_{f} 0.21$ (25 \% EtOAc in n-hexane): mp $121-126^{\circ} \mathrm{C}$: IR (KBr) 1718. $1664,1458,1381,1176 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J$ $=4.5 \mathrm{~Hz} .1 \mathrm{H}), 7.66-7.60(\mathrm{~m} .2 \mathrm{H}) .7 .50-7.44(\mathrm{~m}, 1 \mathrm{H}), 3.56-$ $3.49(\mathrm{~m}, 1 \mathrm{H}) .3 .28-3.19(\mathrm{~m} .1 \mathrm{H}) .2 .89-2.77(\mathrm{~m}, 1 \mathrm{H}) .2 .24$ (dd, $J=6.0$ and 14.0 Hz .1 H$), 1.76 \cdot 1.60(\mathrm{~m} .1 \mathrm{H}), 0.91(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=7.0 \mathrm{~Hz} .3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $184.8,177.6,146.3$. $134.9,134.4 .130 .0,128.9 .128 .8,61.7$. $50.5,46.9 .37 .4 .21 .1$. 15.2: MS mz $423\left(\mathrm{M}^{-}+\mathrm{l}\right), 308,234$. 178.

Compound 12d(Bis-Michael adduct): TLC $R_{f} 0.21$ (25 \% EtOAc in n-hexane): mp 173-175 ${ }^{\circ} \mathrm{C}$: IR (KBr) 1712. 1663, 1602. $1325 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.41$ (dd. $J=1.5$ and 8.0 Hz .1 H$) .7 .68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t} . J=11.0 \mathrm{~Hz}$. $1 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~s} .3 \mathrm{H}), 1.69-1.61(\mathrm{~m} .2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) δ 209.1. 184.9. 147.2, 135.0, 134.1, 129.5. 129.2 129.0. 127.6. 40.1. 40.0. 39.9. 31.4: MS $m z 335$ $\left(\mathrm{M}^{+}+\mathrm{l}\right), 264.246,221$.
Compound 12 e (Bis-Michael adduct): mp $132-134^{\circ} \mathrm{C}$: IR (KBr) 1707. $1659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHZ}: \mathrm{CDCl}_{3}$) δ $0.81(\mathrm{t} . J=7.3 \mathrm{~Hz} .6 \mathrm{H}), 1.58-1.86(\mathrm{~m}, 4 \mathrm{H}) .1 .98(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 4 \mathrm{H}), 2.51-2.60(\mathrm{~m}, 4 \mathrm{H}) .7 .49(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-$ $7.70(\mathrm{~m}, 4 \mathrm{H}), 8.41(\mathrm{~d} . J=9.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz : $\left.\mathrm{CDCl}_{3}\right) \delta 9.1 .37 .4 .38 .8 .40 .1,46.2,127.7,129.0,129.2$. 134.1, 136.0, 147.3, 185.0, 211.9. MS m/z $363(\mathrm{M}+\mathrm{l}), 316$. 278. 260.

Compound 12f(Bis-Michael adduct): A solution of phenyl vinyl ketone (prepared from 3-dimethylaminopropiophenone) ($290 \mathrm{mg}, 2.2 \mathrm{nmol}$). anthrone ($194 \mathrm{mg}, 1.0 \mathrm{nmol}$) and sodium ethoxide ($3 \mathrm{mg}, 0.04 \mathrm{mmol}$) in ethanol (2.0 mL) was refluxed for 3 h . The residue was chromatographed over silica gel ($2 \% \mathrm{EtOAc}$ in benzene) to give 10.10 -bis-[(2-benzoyl)ethyl]-9(10)-anthracenone 12 f ($227 \mathrm{mg} .50 \%$) as a white solid.

TLC $R_{f} 0.47$ (25% EtOAc in n-hexane); mp $180-184^{\circ} \mathrm{C}$: IR (KBr) 1680, 1655. 1600, 1458. $1324 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d} . J=7.7 \mathrm{~Hz} .1 \mathrm{H}), 7.73 \cdot 7.70(\mathrm{~m}, 2 \mathrm{H}) .7 .57-$ $7.41(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.26(\mathrm{~m} .2 \mathrm{H}), 2.83-2.75(\mathrm{~m} .2 \mathrm{H}) .2 .27-$ 2.19 (m. 2 H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 200.7$. 185.5. 147.3. 138.0, 136.1. 134.7, 134.2. 130.0, 129.4. 129.1, 127.7, 46.5, 40.9.35.1: MS mz $446\left(\mathrm{M}^{+}-12\right), 362.337,326.305 .194$.

Compound $\mathbf{1 2 g}$ (Bis-Michael adduct): TLC $R_{f} 0.15$ (25 $\%$ EtOAc in n-hexane): mp 213-215 ${ }^{\circ} \mathrm{C}$; IR (KBr) 2244, 1662. 1458, $1326 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.45$ (d. $J=9.6$ $\mathrm{Hz} .1 \mathrm{H}) .7 .81(\mathrm{t} . J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .7 .65-7.56(\mathrm{~m}, 2 \mathrm{H}), 2.70-$ $2.62(\mathrm{~m} .2 \mathrm{H}) .1 .65-1.56(\mathrm{~m}, 2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 183.6$, 143.7, 135.7. 134.4. 130.3. 128.9. 127.1, 119.9, 46.5. 41.8, 14.1; MS mz 248 [M-52 ($\left.\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right)$], 247. 207, 179. 152.

Compound 12h(Bis-Michael adduct): TLC $R_{f} 0.45$ (25 \% EtOAc in n-hexane): mp $210-212^{\circ} \mathrm{C}$; IR (KBr) 1663, 1600. 1447. 1304. $1152 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.34$ (d. J $=9.4 \mathrm{~Hz}, \mathrm{lH}) .7 .62-7.43(\mathrm{~m}, 7 \mathrm{H}), 7.29-7.25(\mathrm{~m} .1 \mathrm{H}) .2 .64-$ $2.55(\mathrm{~m} .2 \mathrm{H}) .2 .27-2.17(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 183.6$, $144.0,139.9$. 136.5. 135.4. 133.8, 130.9. 129.9. 129.8. 129.4, 126.7. 52.9. 45.4. 38.8 .

Compound 12i(Mono-Michael adduct): TLC $R_{f} 0.45$ (25% EtoAc in n-hexane); IR (KBr) 1734. 1665, 1601. 1314 $\mathrm{cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.29-8.21(\mathrm{~m} .2 \mathrm{H}), 7.63-7.39(\mathrm{~m}$, $6 \mathrm{H}) .4 .28(\mathrm{~d}, J=3.3 \mathrm{~Hz} .1 \mathrm{H}) .2 .70(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.54(\mathrm{~m}$, $\mathrm{IH}) .2 .43-2.3 \mathrm{I}(\mathrm{m} . \mathrm{IH}) .2 .06-1.94(\mathrm{~m} . \mathrm{IH}) .0 .56(\mathrm{~d} . J=6.9$ $\mathrm{Hz} .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 183.2 .174 .6,145.3,143.3$, $135.2,134.7,134.3$. 133.9. 130.4, 130.2. 128.9. 128.8, 128.6, 53.3. 48.5, 41.8. 40.1, 17.0.

Compound $\mathbf{1 2 j}$ (Mono-Michael adduct): TLC $R_{f} 0.29$ (10% EtOAc in benzene); mp $104-107^{\circ} \mathrm{C}$: IR (KBr) 1710 , 1665. 1599. 1311. $1091 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.32-8.26$ $(\mathrm{m} .2 \mathrm{H}), 7.69-7.44(\mathrm{~m} .6 \mathrm{H}), 4.56(\mathrm{~d} . J=3.3 \mathrm{~Hz}, \mathrm{IH}) .4 .17-$ $4.10(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s} .3 \mathrm{H}) .1 .97-1.82(\mathrm{~m}, 5 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 207.8,186.4$. 142.4. 134.5, 134.1, 131.1. 130.3. $129.2,129.0 .128 .7,85.1 .59 .6 .46 .0,45.2,32.6$; MS $m \geq 263$ $\left[\mathrm{M}^{-}-31\left(\mathrm{OCH}_{3}\right)\right] .248,238.195 .165$.

Compound $12 \mathbf{k}$ (Mono-Michael adduct): TLC $R_{f} 0.24$ (10% EtOAc in n-hexane); mp $96-99{ }^{\circ} \mathrm{C}$; IR (KBr) 1735 , 1661. 1599, $1315 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d} . J=8.0$ $\mathrm{Hz} .2 \mathrm{H}), 7.64-7.43(\mathrm{~m}, 6 \mathrm{H}), 4.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}, \mathrm{lH}) .2 .55-$ $2.46(\mathrm{~m} .1 \mathrm{H}), 2.15-1.63(\mathrm{~m}, 5 \mathrm{H}) .1 .47-1.42(\mathrm{~m} .1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 218.2$. 186.6. 144.5. 143.9, 134.7, 134.6. $134.2,134.0 .130 .3 .130 .0 .129 .3 .129 .2,129.1,49.7 .48 .4$, 44.4. 39.9. 27.9: MS mz $196\left[\mathrm{M}^{-}-80\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}\right)\right], 166,139$. 115. 82.

Compound 121(Mono-Michael adduct): TLC $R_{f} 0.18$ (10% EtOAc in n-hexane), mp $128-130^{\circ} \mathrm{C}$; IR (KBr) 1702 , 1663. 1600. 1464. $1315 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d} . J$ $=7.5 \mathrm{~Hz} .2 \mathrm{H}), 7.61-7.38(\mathrm{~m}, 6 \mathrm{H}) .4 .20(\mathrm{~d} . J=3.6 \mathrm{~Hz} .1 \mathrm{H})$, 2.31-2.14 (m, 3H), 1.98-1.82 (m, 3H), 1.70-1.62 (m, 1H), $1.48-1.34(\mathrm{~m}, 1 \mathrm{H}) .0 .98$ (dt. $J=3.3$ and 12.2 Hz .1 H$):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 212.1$. 186.7. 143.9. 143.4, 135.0, 134.1. $130.3,130.2$. 129.2 . 129.1. 128.9. 128.8, 128.7, 50.2. 50.0, 46.9. 42.5. 29.2, 26.4; MS $m z 291\left(\mathrm{M}^{-}+1\right), 232.202 .195$. 165.

Acknowledgment. We gratefilly ackiowledged the financial support from the Regional Research Center Program of

MOST and KOSEF. This work was partly supported by grant No. R01-2003-000-10187-0 from the Basic Research Progran of the KOSEF.

References

1. (a) Beak. P.: Mills. S. G. J. Org (Them. 1985. 50. 1216. (b) Kanamaru, N.: Nagakura, S. J. Am. Chem. Soc. 1968. 90. 6905.2.
2. (a) Meek, J. S.; Evans. W. B.; Godefroi, V; Benson, W. R.: Wilcox. M. F.: Clark. W. G.: Tiedeman. T. J. Org. Chem. 1961. 26. 4281. (b) Gomez-Bengona. E.: Cuerva. J. M.: Mateco. C.: Echavarren. A. M. J. Am. Chem. Soc. 1996. 118. 8553.
3. (a) Bruson. H. A. J. Org. Chem. 1942, 7, 2457. (b) Bruson. H. A; Riener, T. W. J. Am. Chem. Soc. 1942, 64. 2850. (c) Money. T; Raphael, R. A.: Scott. A. I:: Young. D. W. J. Chen. Soc. 1961. 3958
4. (a) Meek. J. S.: Monroe. P. A.: Bouboulis. C. J. J. Org. Chem. 1963. 28. 2572. (b) Meek. J. S.: Dann. J. R.: Poon. B. T. J.Am. Chem. Soc. 1956, 78. 5413 . (c) Meek, J. S.: Poon. B. T.: Cristol, S. I. J. Am. Chem. Soc. 1952. 7t, 761.
5. The energies were calculated by the AM-1 calculation after geometry optimization.
6. Cohen. D.: Miller. I. T.: Richards. K. E. J. Chem. Soc. (C) 1968. 793.7.
7. Kanpp. S.: Omaf. R. M.: Rodriques. K. J. Am. Chem. Soc. 1983.
105.5494
8. (a) Koerner. M.: Rickborn. B. J. Org. Chem. 1991. 56. 1373. (b) Koerner, M.; Rickborn, B. J. Org. Chem. 1990, 55. 2662. (c) Koerner, M; Rickborn, B. J. Org. Chen. 1989, 5t, 9.
9. For O-alhyalation, see: (a) Willner, I; Halperm. M. Swhesis 1979. 177. (b) Pirkle. W. H.: Finn. T. M. J. Org. Chem. 1983. 48. 2779. (c) Barnett. W. E.: Needham. L. L. J. Org Chem. 1971. 36.4134. For C-alkylation. see: (d) Dimmel. D. R.: Shepard. D. J. Org Chem. 1982. 47. 22. (e) Majumdar. K. C.; Chattopadhyay. S. K.; Khan. A. T. Spmosis 1988, 552 (f) Majumdar, K. C.; Khan. A. T.: Chattopadhyay. S. K. J. Chem. Soc., Chem. Conmum. 1989. 655.
10. The rough relative reactivity of dienophile is as follows: 1 for cycloherene. 10^{3} for cyclopentene. 10^{1} for norbornene. 10^{6} for methyl acrylate. 10^{9} for dimethyl fumarate. maleonitrile and fumaronitrile, and 10^{10} for maleic anhydride. See ref. 8 b .
11. Baik. W.; Yoon, C. H.; Lee. K. C.: Lee, H. J.; Koo. S.; Yoon, B.; Kim. H. J. Chem. Res. (S) 1998.358.
12. Bergmann. E. D.: Ginsburg. D.: Pappo. R. Organic Reactions 1959. 10. 179.
13. Truce. W. E.; Wellisch. E. J. Am. Chem. Soc. 1952. 74. 2881.
14. Inukai. T.; Kojima. T. J. Org Chem. 1967, 32.872.
15. (a) Evans. D. A.: Golob. A. M. J. Am. Chem. Soc. 1975. 97. 4765. (b) Papies. O: Grimme. W. Terrahedron Lett 1980. 21. 2799. (c) Zoeckler. M. T: Carpenter. B. K. J. Am. Chem. Soc. 1981. 103. 7661.

[^0]: "Isolated yields alter recrystallization. 'Isolated yields afler chromatographic purification. 'First step ($\mathbf{4}$ to $\mathbf{1 0}$)/second step (10 to 11).

