• 제목/요약/키워드: Addictive manufacturing

검색결과 4건 처리시간 0.018초

도석을 점결제로 상용한 하수슬러지 인공경량골재의 개발에 관한 실험적 연구 (An Experimental Study on the Development of Sewage Sludge Artificial Light-weight Aggregate Using Pottery Stone)

  • 정의승;사순헌;지석원;서치호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.91-94
    • /
    • 2010
  • The purpose of this study is to produce artificial lightweight aggregate. The properties of aggregate are deducted by analysing the plasticity of aggregate according to the addictive contents of $CaCO_3$ and $Al_2O_3$ on constant plastic temperature($1150^{\circ}C{\sim}1160^{\circ}C$) and the specific gravity, the percentage of water absorbtion. The density on the temperature of $1150^{\circ}C{\sim}1160^{\circ}C$ which results from that the plastic temperature of pottery stone is decreased by increasing the addictive contents of $CaCO_3$ and $Al_2O_3$ manufacturing artificial light weight aggregate using pottery stone is included in the arrange of light weight aggregate density. And the percentage of water absorbtion is 4.2~14% which is similar to or lower than existing artificial light weight aggregate. The unit volume weight is in inverse proportion to density and to increase addictive contents of flux.

  • PDF

다공성 임플란트 제조를 위한 3D 프린팅 응용 금형기술 (Mold technology with 3D printing for manufacturing of porous implant)

  • 이성희;김미애;윤언경;이원식
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.30-33
    • /
    • 2017
  • In this study, the mold technology for manufacturing of porous implant was investigated. Firstly, we considered the concept of insert molding technology with 3D printing of porous inert part. The part on implant was designed in the end region of the implant. And then main implant bodies were manufactured using conventional machining method. The other porous parts were designed and optimized with molding simulation. As the feature size of porous implant was so small that perfect feature of it using 3D printing technology could not be obtained. So, we proposed another scheme for manufacturing of the porous implant in the replace of the former approach. Polymer mold cores with 3D printing technology were considered. The effects of addictive manufacturing process parameters on the properties of mechanical and dimensional accuracy were investigated. Direct 3D printed polymer mold cores were designed and manufactured under the simulation of thermal and molding analysis. It was shown that 3D printed mold core with polymer could be adapted to the injection molding for porous implant.

금속 Powder Bed Fusion 적층제조 기술의 분말 입도 최적화를 위한 시뮬레이션 (Optimization of Metal Powder Particle Size Distribution for Powder Bed Fusion Process via Simulation)

  • 이화선;김대겸;김영일;남지은;손용;김택수;이빈
    • 한국분말재료학회지
    • /
    • 제27권1호
    • /
    • pp.44-51
    • /
    • 2020
  • Powder characteristics, such as density, size, shape, thermal properties, and surface area, are of significant importance in the powder bed fusion (PBF) process. The powder required is exclusive for an efficient PBF process. In this study, the particle size distribution suitable for the powder bed fusion process was derived by modeling the PBF product using simulation software (GeoDict). The modeling was carried out by layering sintered powder with a large particle size distribution, with 50 ㎛ being the largest particle size. The results of the simulation showed that the porosity decreased when the mean particle size of the powder was reduced or the standard deviation increased. The particle size distribution of prepared titanium powder by the atomization process was also studied. This study is expected to offer direction for studies related to powder production for additive manufacturing.

금속 적층 제조 격자 구조체의 공극 충진용 부착력 증진 반응성 아크릴 화합물에 대한 실험적 연구 (Experimental Study on Enhancing Adhesion-Reactive Acrylic Compounds for Pore Filling in Additive Manufactured Metal Lattice Structures)

  • 박광민;박명주
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권5호
    • /
    • pp.143-149
    • /
    • 2020
  • 본 연구에서는 금속 적층 제조로 출력한 격자 구조체의 내부 공극에 반응성 아크릴 화합물을 충진시켜, 밀도 제어가 가능한 밀실 복합 격자 구조체를 제작하는 것을 목표로 한다. 또한 본 격자 구조체를 건설분야에 적용하기 위하여 반응성 아클릴 화합물에 보통 포틀랜드 시멘트를 첨가함으로써 콘크리트와의 부착성능을 향상시킨 부착력 증진 반응성 아크릴 화합물을 검토하였다. 최종적으로 제조한 부착력 증진 반응성 아크릴 화합물을 격자 구조체 내부에 충진하여 밀도 제어형 기능성 복합 격자 구조체(Hybrid Lattice structure)의 비중, 흡수율 및 부착강도를 검토하였다. 그 결과, 밀도 제어 가능, 흡수율 1.0 % 이하 및 재령 1일 부착강도 1.78 MPa ~ 1.98 MPa의 결과물을 도출하였다.