• Title/Summary/Keyword: Addictive manufacturing

Search Result 4, Processing Time 0.016 seconds

An Experimental Study on the Development of Sewage Sludge Artificial Light-weight Aggregate Using Pottery Stone (도석을 점결제로 상용한 하수슬러지 인공경량골재의 개발에 관한 실험적 연구)

  • Jeong, Ui-Seung;Sa, Soon-Heon;Ji, Suk-Won;Seo, Chee-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.91-94
    • /
    • 2010
  • The purpose of this study is to produce artificial lightweight aggregate. The properties of aggregate are deducted by analysing the plasticity of aggregate according to the addictive contents of $CaCO_3$ and $Al_2O_3$ on constant plastic temperature($1150^{\circ}C{\sim}1160^{\circ}C$) and the specific gravity, the percentage of water absorbtion. The density on the temperature of $1150^{\circ}C{\sim}1160^{\circ}C$ which results from that the plastic temperature of pottery stone is decreased by increasing the addictive contents of $CaCO_3$ and $Al_2O_3$ manufacturing artificial light weight aggregate using pottery stone is included in the arrange of light weight aggregate density. And the percentage of water absorbtion is 4.2~14% which is similar to or lower than existing artificial light weight aggregate. The unit volume weight is in inverse proportion to density and to increase addictive contents of flux.

  • PDF

Mold technology with 3D printing for manufacturing of porous implant (다공성 임플란트 제조를 위한 3D 프린팅 응용 금형기술)

  • Lee, Sung-Hee;Kim, Mi-Ae;Yun, Eon-Gyeong;Lee, Won-Sik
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.30-33
    • /
    • 2017
  • In this study, the mold technology for manufacturing of porous implant was investigated. Firstly, we considered the concept of insert molding technology with 3D printing of porous inert part. The part on implant was designed in the end region of the implant. And then main implant bodies were manufactured using conventional machining method. The other porous parts were designed and optimized with molding simulation. As the feature size of porous implant was so small that perfect feature of it using 3D printing technology could not be obtained. So, we proposed another scheme for manufacturing of the porous implant in the replace of the former approach. Polymer mold cores with 3D printing technology were considered. The effects of addictive manufacturing process parameters on the properties of mechanical and dimensional accuracy were investigated. Direct 3D printed polymer mold cores were designed and manufactured under the simulation of thermal and molding analysis. It was shown that 3D printed mold core with polymer could be adapted to the injection molding for porous implant.

Optimization of Metal Powder Particle Size Distribution for Powder Bed Fusion Process via Simulation (금속 Powder Bed Fusion 적층제조 기술의 분말 입도 최적화를 위한 시뮬레이션)

  • Lee, Hwaseon;Kim, Dae-Kyeom;Kim, Young Il;Nam, Jieun;Son, Yong;Kim, Taek-Soo;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.44-51
    • /
    • 2020
  • Powder characteristics, such as density, size, shape, thermal properties, and surface area, are of significant importance in the powder bed fusion (PBF) process. The powder required is exclusive for an efficient PBF process. In this study, the particle size distribution suitable for the powder bed fusion process was derived by modeling the PBF product using simulation software (GeoDict). The modeling was carried out by layering sintered powder with a large particle size distribution, with 50 ㎛ being the largest particle size. The results of the simulation showed that the porosity decreased when the mean particle size of the powder was reduced or the standard deviation increased. The particle size distribution of prepared titanium powder by the atomization process was also studied. This study is expected to offer direction for studies related to powder production for additive manufacturing.

Experimental Study on Enhancing Adhesion-Reactive Acrylic Compounds for Pore Filling in Additive Manufactured Metal Lattice Structures (금속 적층 제조 격자 구조체의 공극 충진용 부착력 증진 반응성 아크릴 화합물에 대한 실험적 연구)

  • Park, Kwang-Min;Park, Myung-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.143-149
    • /
    • 2020
  • The purpose of this study is to manufacture a variable density - hybrid lattice structure control by filling the pore of the metal addictive manufactured lattice structure with lightweight reactive acrylic compounds(RAC). To apply the variable density - hybrid lattice structure to the construction industry, the enhancing adhesion - reactive acrylic compounds(EA-RAC) which increased the adhesion strength was manufactured by adding ordinary portland cement to the RAC. Finally, the EA-RAC was filled into the lattice structure to test the specific density, water absorption, and adhesion strength of the variable density - hybrid lattice structure. The results were obtained with density controllable, water absorption less than 1.0%, and 1-day bonding strength of 1.78 MPa to 1.98 MPa.