• Title/Summary/Keyword: Added mass

Search Result 932, Processing Time 0.025 seconds

Evaluation of Ceramics, Alumina and Silicone Carbide Added Concrete Surface Protecting Agent (세라믹스, 알루미나 및 실리콘 카바이드 혼합물이 첨가된 콘크리트 표면보호재의 성능 평가)

  • Kong, Jin-Hee;Kim, Young-Geun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.43-46
    • /
    • 2009
  • The purpose of this study is to enhance durability of concrete structures that uses this surface protecting material by carrying out the performance test of the surface protecting material of concrete, and as s result, we reached out the conclusion as follow. 1. As a result of the test measuring the stability and adhesive power of conductive film against ultraviolet, freezing & thawing, and damage from seawater that deteriorate the surface protecting material, it was turned out to meet the performance criteria specifying in the KS standard enough to gain a good evaluation to use as a surface protecting material. 2. As a result of the test identifying the neutralization-furtherance, it was assessed to be capable of protecting effectively concrete structures from carbonic acid gas by a very low depth of 0.1mm of neutralization. 3. As a result of the test identifying Penetrated Resistance Properties of chloride ion, as it was turned out to have a very low value of 819 Coulombs, it was assessed that even in the environment where the corrosion by chloride such sea environment is very affective, the film can effectively protect the concrete structure. 4. As a result of the test identifying freezing & thawing, as there was no change in reduction of mass after 400 cycle, it was assessed that the film has a good resistance against freezing & thawing. According to the results of study above, it is expected that this technology can extend its durability of concrete structure and be widely used for concrete structure through means (methods) to prevent the neutralization and damage from seawater as original purposes of the surface protecting material.

  • PDF

Analysis of tert-Butanol, Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene and Xylene in Ground Water by Headspace Gas Chromatography-Mass Spectrometry

  • Shin, Ho-Sang;Kim, Tae-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3049-3052
    • /
    • 2009
  • Methyl tert-butyl ether (MTBE) is added to gasoline to enhance the octane number of gasoline, tert-butyl alcohol (TBA) is major degradation intermediate of MTBE in environment, and benzene, toluene, ethyl benzene and xylene (BTEX) are also major constituents of gasoline. In this study, a simplified headspace analysis method was adapted for simultaneous determination of MTBE, TBA and BTEX in ground water samples. The sample 5.0 mL and 2 g NaCl were placed in a 10 mL vial and the solution was spiked with fluorobenzene as an internal standard and sealed with a cap. The vial was placed in a heating block at 85 $^{\circ}C$ for 30 min. The detection limits of the assay were 0.01 ${\mu}$g/L for MTBE and BTEX, and 0.02 ${\mu}$g/L for TBA. The method was used to analyze 110 ground water samples from various regions in Korea, and to survey the their background concentration in ground water in Korea. The samples revealed MTBE concentrations in the range of 0.01 - 0.45 ${\mu}$g/L (detection frequency of 57.3%), TBA concentrations in the range of 0.02 - 0.08 ${\mu}$g/L (detection frequency of 5.5%), and total BTEX concentrations in the range of 0.01 - 2.09 ${\mu}$g/L (detection frequency of 87.3%). The developed method may be used when simultaneously determining the amount of MTBE, TBA and BTEX in water.

Effect of biochar application on growth of Chinese cabbage (Brassica chinensis)

  • Oh, Taek-Keun;Lee, Jae-Han;Kim, Su-Hun;Lee, Ho Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.359-365
    • /
    • 2017
  • Biochar has the ability to mitigate climate change, improve crop productivity, and adsorb various contaminants. The aim of this work was to confirm the effect of biochar as a soil amendment on growth of Chinese cabbage (Brassica chinensis) using a pot experiment. Biochar was produced from residual-wood burnt at a pyrolytic temperature of $400^{\circ}C$ and consisted of 51.6 % carbon (C) by mass. The biochar was added to the soil at 0, 1, 3, and 5% by weight, which represent about 0, 18, 54, and $90t\;ha^{-1}$, respectively. The treatments were arranged in a randomized complete block design with 3 replications. The Chinese cabbage was grown for 49 days in a glasshouse in pots filled with sandy loam soil. Experimental results showed that the residual-wood biochar used for the experiment was slightly alkaline (pH 7.5). The fresh weights of Chinese cabbage were 86.22 g, 84.1 g, 63.23 g and 70.87 g, respectively, for biochar applications at 0, 18, 54, and $90t\;ha^{-1}$. Compared with the control (i.e., no biochar), biochar application increased soil pH and electrical conductivity (EC). Addition of biochar (54 and $90t\;ha^{-1}$) to sandy loam soil had no effect on growth of Chinese cabbage. This might be due to excessive increase of soil pH from the biochar application, leading to reduced availability of plant nutrients. Based on these results, the authors conclude that an excessive addition of biochar may have negative effects on the healthy growth of Chinese cabbage.

Current effects on global motions of a floating platform in waves

  • Shen, Meng;Liu, Yuming
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.121-141
    • /
    • 2017
  • The purpose of this paper is to understand and model the slow current (~2 m/s) effects on the global response of a floating offshore platform in waves. A time-domain numerical simulation of full wave-current-body interaction by a quadratic boundary element method (QBEM) is applied to compute the hydrodynamic loads and motions of a floating body under the combined influence of waves and current. The study is performed in the context of linearized potential flow theory that is sufficient in understanding the leading-order current effect on the body motion. The numerical simulations are validated by quantitative comparisons of the hydrodynamic coefficients with the WAMIT prediction for a truncated vertical circular cylinder in the absence of current. It is found from the simulation results that the presence of current leads to a loss of symmetry in flow dynamics for a tension-leg platform (TLP) with symmetric geometry, resulting in the coupling of the heave motion with the surge and pitch motions. Moreover, the presence of current largely affects the wave excitation force and moment as well as the motion of the platform while it has a negligible influence on the added mass and damping coefficients. It is also found that the current effect is strongly correlated with the wavelength but not frequency of the wave field. The global motion of a floating body in the presence of a slow current at relatively small encounter wave frequencies can be satisfactorily approximated by the response of the body in the absence of current at the intrinsic frequency corresponding to the same wavelength as in the presence of current. This finding has a significant implication in the model test of global motions of offshore structures in ocean waves and currents.

A Method for the Preliminary Estimation of Vertical Natural Vibations of High Speed Boats (고속선(高速船) 선체고유상하진동(船體固有上下振動)의 초기추정(初期推定) 방법(方法))

  • K.C.,Kim;H.B.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.1
    • /
    • pp.25-29
    • /
    • 1980
  • For the preliminary estimation of the vertical hull natural frequency, the Schlick's or Schlick-type formulae have been traditional ones and are still in common use today. Some investigators have made their efforts, based on statistical data of ships' system parameters, to extend the applicability of Schlick-type formulae to higher modes, or to utilize the Rayleigh method. For instance, the work done by Dinsenbacher et al.[5] belongs to the former and that of Nagamoto et al.[6] to the latter. In a part of his previous paper[7], the author, investigating the case of a cargo ship of medium size, suggested that provided statistically simplified curves such as trapezoid of system parameter distributions are available in hands, direct utlization of an ordinary computer program can be also an another convenient method by which we can obtain both natural frequencies and normal mode shapes. In this paper, to confirm the feasibility of the above suggestion, four high speed boats are investigated. The system parameters of them are originally given in [5]. The computer program used here is one confiled based on a calculation method derived from Myklestal-Prohl modeling of hull, transfer matrix formulation and an extended Gumbel's initial value method for solving frequency equation. The results of the investigation show that the direct calculation based on statistically oriented and reasonably assumed trapezoidal mean curves of system parameter distributions can give us natural frequencies within about 5% deviation up to several-noded modes and normal mode shapes serviceable at least up to 4- or 5-noded modes in comparision with those based on actual distributions of system parameters. For this simplified method the actual data required for input are only of ship length, displacement, total added mass, bending and shear rigidity at amidship. They are available at the early stage of design. By this method we can also easily trace variations of vibration characteristics in the course of ship design cycles.

  • PDF

Determination of global ice loads on the ship using the measured full-scale motion data

  • Lee, Jae-Man;Lee, Chun-Ju;Kim, Young-Shik;Choi, Gul-Gi;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.301-311
    • /
    • 2016
  • This paper describes the whole procedures to determine ice-induced global loads on the ship using measured full-scale data in accordance with the method proposed by the Canadian Hydraulics Centre of the National Research Council of Canada. Ship motions of 6 degrees of freedom (dof) are found by processing the commercial sensor signals named Motion Pak II under the assumption of rigid body motion. Linear accelerations as well as angular rates were measured by Motion Pak II data. To eliminate the noise of the measured data and the staircase signals due to the resolution of the sensor, a band pass filter that passes frequencies between 0.001 and 0.6 Hz and cubic spline interpolation resampling had been applied. 6 dof motions were computed by the integrating and/or differentiating the filtered signals. Added mass and damping force of the ship had been computed by the 3-dimensional panel method under the assumption of zero frequency. Once the coefficients of hydrodynamic and hydrostatic data as well as all the 6 dof motion data had been obtained, global ice loads can be computed by solving the fully coupled 6 dof equations of motion. Full-scale data were acquired while the ARAON rammed old ice floes in the high Arctic. Estimated ice impact forces for two representative events showed 7e15 MN when ship operated in heavy ice conditions.

Natural Frequency of 2-Dimensional Heaving Circular Cylinder: Time-Domain Analysis (상하동요하는 2차원 원주의 고유진동수: 시간 영역 해석)

  • Kim, Ki-Bum;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.224-231
    • /
    • 2013
  • The concept of the natural frequency is useful for understanding the characters of oscillating systems. However, when a circular cylinder floating horizontally on the water surface is heaving, due to the hydrodynamic forces, the system is not governed by the equation like that of the harmonic one. In this paper, in order to shed some lights on the more correct use of the concept of the natural frequency, a problem of the heaving circular cylinder is analyzed in the time domain. The equation of motion, an integro-differential equation, was derived following the fashion of Cummins (1962), and its coefficients including the retardation function were obtained using the numerical solution of Lee (2012). The equation was solved numerically, and the experiment was also carried out in the CNU flume. Using our numerical and experimental results, the natural frequency was defined as its average value given by the motion data excluding those of the initial stage. Our results were then compared with those of the existing investigations such as Maskell and Ursell (1970), Ito (1977) and Yeung (1982) as well as the newly obtained results of Lee (2012). Comparison showed that the natural frequency obtained here agrees well with that of Lee (2012), which was found through the frequency domain analysis. It was also shown that the approximation of heaving motion by a damped harmonic oscillation, which was regarded as suitable by most previous investigators, is not physically suitable for the reason that can be clearly shown through comparing the shape of MCFRs(Modulus of Complex Frequency Response). Furthermore, we found that although the previous approximations yield the damping ratio significantly different from our result the magnitude of natural frequency is not much different from our result.

A Study on the Sloshing of Cargo Tanks Including Hydroelastic Effects (유탄성을 고려한 탱크내 슬로싱에 대한 연구)

  • Dong-Yeon Lee;Hang-Shoon Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.27-37
    • /
    • 1998
  • The sloshing is very important in a safe transport of the liquid cargo by a ship. With the increasing number of supertanker and LNG carriers, this problem has become increasingly more important. In order to study the magnitude and characteristics of impact pressures due to sloshing, experiments ware performed with a rectangular tank and compared with numerical results. Structural responses of tank wall under impulsive pressures were measured. Structural vibrations induced by the sloshing load were analysed by including hydroelastic erects in terms of added mass and damping. To check the validity of the numerical model, the natural frequencies of plate in air and water were compared with measurements, and a good agreement was found. In the case that a plate vibrates under impulsive loads, the pressure on the flexible plate is larger than that on the rigid plate without hydroelastic effects, which was confirmed experimentally. The frequency of oscillatory pressure as well as accel%pion coincides with the natural frequency of plate in water.

  • PDF

Preliminary Performance Assessment of a Fuel-Cell Powered Hypersonic Airbreathing Magjet

  • Bernard Parent;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.703-712
    • /
    • 2004
  • A variant of the magnetoplasma jet engine (magjet) is here proposed for airbreathing flight in the hypersonic regime. As shown in Figure 1, the engine consists of two distinct ducts: the high-speed duct, in which power is added electromagnetically to the incoming air by a momentum addition device, and the fuel cell duct in which the flow stagnation temperature is reduced by extracting energy through the use of a magnetoplas-madynamic (MPD) generator. The power generated is then used to accelerate the flow exiting the fuel cells with a fraction bypassed to the high-speed duct. The analysis is performed using a quasi one-dimensional model neglecting the Hall and ion slip effects, and fix-ing the fuel cell efficiency to 0.6. Results obtained show that the specific impulse of the magjet is at least equal to and up to 3 times the one of a turbojet, ram-jet, or scramjet in their respective flight Mach number range. Should the air stagnation temperature in the fuel cell compartment not exceed 5 times the incoming air static temperature, the maximal flight Mach number possible would vary between 6.5 and 15 for a magnitude of the ratio between the Joule heating and the work interaction in the MPD generator varied between 0.25 and 0.01, respectively. Increasing the mass flow rate ratio between the high speed and fuel cell ducts from 0.2 to 20 increases the engine efficiency by as much as 3 times in the lower supersonic range, while resulting in a less than 10% increase for a flight Mach number exceeding 8.

  • PDF

Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm

  • Lee, Hyoungsuk;Song, Min-Churl;Suh, Jung-Chun;Chang, Bong-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.562-577
    • /
    • 2014
  • A reliable steady/transient hydro-elastic analysis is developed for flexible (composite) marine propeller blade design which deforms according to its environmental load (ship speed, revolution speed, wake distribution, etc.) Hydro-elastic analysis based on CFD and FEM has been widely used in the engineering field because of its accurate results however it takes large computation time to apply early propeller design stage. Therefore the analysis based on a boundary element method-Finite Element Method (BEM-FEM) Fluid-Structure Interaction (FSI) is introduced for computational efficiency and accuracy. The steady FSI analysis, and its application to reverse engineering, is designed for use regarding optimum geometry and ply stack design. A time domain two-way coupled transient FSI analysis is developed by considering the hydrodynamic damping ffects of added mass due to fluid around the propeller blade. The analysis makes possible to evaluate blade strength and also enable to do risk assessment by estimating the change in performance and the deformation depending on blade position in the ship's wake. To validate this hydro-elastic analysis methodology, published model test results of P5479 and P5475 are applied to verify the steady and the transient FSI analysis, respectively. As the results, the proposed steady and unsteady analysis methodology gives sufficient accuracy to apply flexible marine propeller design.