• Title/Summary/Keyword: Added Masses

Search Result 40, Processing Time 0.024 seconds

Practical Ultraprecision Positioning of a Ball Screw Mechanism

  • Sato, Kaiji;Maeda, Guilherme Jorge
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.44-49
    • /
    • 2008
  • This paper describes the problem of ultraprecision positioning with a ball screw mechanism in the microdynamic range, along with its solution. We compared the characteristics of two ball screw mechanisms with different table masses. The experimental results showed that the vibration resulting from the low stiffness of the ball screw degraded the positioning performance in the microdynamic range for the heavyweight mechanism. The proposed nominal characteristic trajectory following (NCTF) controller was designed for ultra precision positioning of the ball screw mechanism. The basic NCTF control system achieved ultra precision positioning performance with the lightweight mechanism, but not with the heavyweight mechanism. A conditional notch filter was added to the NCTF controller to overcome this problem. Despite the differences in payload and friction, both mechanisms then showed similar positioning performance, demonstrating the high robustness and effectiveness of the improved NCTF controller with the conditional notch filter. The experimental results demonstrated that the improved NCTF control system with the conditional notch filter achieved ultra precision positioning with a positioning accuracy of better than 10 nm, independent of the reference step input height.

A Study on the Characteristic of Natural Frequencies of Railway Open Deck Plate Girder Bridges (철도 무도상판형교의 고유진동특성에 대한 연구)

  • 오지택;최진유;김현민
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1041-1046
    • /
    • 2002
  • A railway open deck plate girder bridge without ballast should support relatively heavier vehicle loads compared with its self-weight. For such a reason, actual dynamic response of the bridge is considerably differing with normal prediction because additional masses added from vehicle to a bridge have an effect on the dynamic characteristics of the bridge. These differences affect to the estimation of a natural frequency change that adopted for one of the evaluation technique of strength decrease, and these make trouble to the analysis of a natural frequency from the field test data that measured at the bridge subjected to a running vehicle. In this study, classification of mass participation ratio for each component of open deck plate girder bridge without ballast and the comparison according to the change of vibration characteristics for the case of subjected to a running vehicle were accomplished.

  • PDF

A Study on Control Characteristics of Translation System Using PD Control and LQR (PD제어와 LQR을 이용한 병진 시스템의 제어특성 연구)

  • 김택현;정상화;이동하
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.78-84
    • /
    • 2001
  • The translation system is made up of springs, masses and a dashpot. This precise piece of equipment is controlled electro-mechanically by a motor and operating program. The control strategy of the system can be changed by spring stiffness, change of mass, and the damping coefficient of the dashpot. This system proves the necessity and effect of a closed loop control. In this paper, PD control experiments were implemented for the translation system. When the north falter was added on the PD controller, we compared the response characteristics of the two systems. The state feedback controller minimized scalar control gains and the resulting response characteristics of the system were studied using the LQR design. Finally, we improved the response characteristics of the translation system which are rising time, settling time, steady state error, and overshoot LQR was better as compared with PD control.

  • PDF

Added Mass for both Vertical and Horizontal Vibration of Two-Dimensional Cylinders of Curvilinear-Element Sections with Chines in a Free Surface (Chine형(型) 선체단면(船體斷面) 주상체(柱狀體)의 자유수면(自由水面)에서의 상하(上下) 및 수평진동(水平振動)에 대(對)한 부가질량(附加質量))

  • Keuck-Chun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-24
    • /
    • 1969
  • Added masses of two-dimensional cylinders of curvilinear-element sections with chines, which are similar to marked V character ship sections with either single or double chines, oscillating at high frequency in a free surface of an ideal fluid are calculated for both vertical and horizontal vibration by employing two particular two-parameter families of the conformal transformation. The numerical results are graphically presented in the forms of added mass coefficient curves in terms of the sectional area coefficient and the half beam-draft ratio together with the section contours derived with the employed transformations, and discussed in comparision with those of the Lewis forms and of straightline-element sections with single chine for vertical vibration, and, for horizontal vibration, with those of the Lewis forms.

  • PDF

Fabrication and Characterization of Array Tactile Actuator Based on Cellulose Acetate (셀룰로오스 아세테이트 기반 어레이 촉각 액추에이터의 제작 및 특성평가)

  • Kim, Hyun-Chan;Yun, Sungryl;Ko, Hyun-U;Kim, Jaehwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.743-748
    • /
    • 2015
  • This paper reports the enhanced fabrication and characterization of a $3{\times}3$ array tactile actuator composed of cellulose acetate. The array tactile actuator, with dimensions of $15{\times}15{\times}1mm^3$, consists of 9 pillar-supported cells made from a cellulose-acetate molding. The fabrication process and performance test along with the results for the suggested actuator are explained. To improve the cell-array fabrication, a laser cut was adopted after the molding process. The displacement of the unit cell increased the input voltage and frequency. Various top masses are added onto the actuator to mimic the touch force, and the acceleration of the actuator is measured under actuation. When 2 kV is applied to the actuator, the maximum acceleration is 0.64 g, which is above the vibrotactile threshold. The actuation mechanism is associated with the electrostatic force between the top and bottom electrodes.

Numerical study on the resonance response of spar-type floating platform in 2-D surface wave

  • Choi, Eung-Young;Cho, Jin-Rae;Jeong, Weui-Bong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • This paper is concerned with the numerical study on the resonance response of a rigid spar-type floating platform in coupled heave and pitch motion. Spar-type floating platforms, widely used for supporting the offshore structures, offer an economic advantage but those exhibit the dynamically high sensitivity to external excitations due to their shape at the same time. Hence, the investigation of their dynamic responses, particularly at resonance, is prerequisite for the design of spar-type floating platforms which secure the dynamic stability. Spar-type floating platform in 2-D surface wave is assumed to be a rigid body having 2-DOFs, and its coupled dynamic equations are analytically derived using the geometric and kinematic relations. The motion-variance of the metacentric height and the moment of inertia of floating platform are taken into consideration, and the hydrodynamic interaction between the wave and platform motions is reflected into the hydrodynamic force and moment and the frequency-dependent added masses. The coupled nonlinear equations governing the heave and pitch motions are solved by the RK4 method, and the frequency responses are obtained by the digital Fourier transform. Through the numerical experiments to the wave frequency, the resonance responses and the coupling in resonance between heave and pitch motions are investigated in time and frequency domains.

Hybrid nonlinear control of a tall tower with a pendulum absorber

  • Orlando, Diego;Goncalves, Paulo B.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.153-177
    • /
    • 2013
  • Pendulums can be used as passive vibration control devices in several structures and machines. In the present work, the nonlinear behavior of a pendulum-tower system is studied. The tower is modeled as a bar with variable cross-section with concentrated masses. First, the vibration modes and frequencies of the tower are obtained analytically. The primary structure and absorber together constitute a coupled system which is discretized as a two degrees of freedom nonlinear system, using the normalized eigenfunctions and the Rayleigh-Ritz method. The analysis shows the influence of the geometric nonlinearity of the pendulum absorber on the response of the tower. A parametric analysis also shows that, with an appropriate choice of the absorber parameters, a pendulum can decrease the vibration amplitudes of the tower in the main resonance region. The results also show that the pendulum nonlinearity cannot be neglected in this type of problem, leading to multiplicity of solutions, dynamic jumps and instability. In order to improve the effectiveness of the control during the transient response, a hybrid control system is suggested. The added control force is implemented as a non-linear variable stiffness device based on position and velocity feedback. The obtained results show that this strategy of nonlinear control is attractive, has a good potential and can be used to minimize the response of slender structures under various types of excitation.

Development of a nonlinear seismic response capacity spectrum method for intake towers of dams

  • Cocco, Leonardo;Suarez, Luis E.;Matheu, Enrique E.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.321-341
    • /
    • 2010
  • The seismic-induced failure of a dam could have catastrophic consequences associated with the sudden release of the impounded reservoir. Depending on the severity of the seismic hazard, the characteristics and size of the dam-reservoir system, preventing such a failure scenario could be a problem of critical importance. In many cases, the release of water is controlled through a reinforced-concrete intake tower. This paper describes the application of a static nonlinear procedure known as the Capacity Spectrum Method (CSM) to evaluate the structural integrity of intake towers subject to seismic ground motion. Three variants of the CSM are considered: a multimodal pushover scheme, which uses the idea proposed by Chopra and Goel (2002); an adaptive pushover variant, in which the change in the stiffness of the structure is considered; and a combination of both approaches. The effects caused by the water surrounding the intake tower, as well as any water contained inside the hollow structure, are accounted for by added hydrodynamic masses. A typical structure is used as a case study, and the accuracy of the CSM analyses is assessed with time history analyses performed using commercial and structural analysis programs developed in Matlab.

Development of Vibration Analysis Program for Anti-resonance Design of Vertical-axis Tidal Current Turbine (조류발전용 수직축 터빈의 공진 회피 설계를 위한 프로그램 개발)

  • Bae, Jae-Han;Seong, Hye-Min;Cho, Dae-Seung;Kim, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.336-341
    • /
    • 2012
  • The vertical-axis tidal current turbine (VAT) consisting of blades, struts to support blades, shaft, generator and so forth requires anti-resonance design against fluid fluctuation forces generated on blades to ensure its stable operation. In this study, a free vibration analysis program based on the finite element method is developed for efficient anti-resonance design of VAT in the preliminary design stage. In the finite element modeling, the VAT structure components are regarded as beam elements. Added masses due to the fluid and structure interaction of VAT evaluated by empirical formulas are considered as lumped mass elements. In addition, input parameters required for the analysis can be automatically prepared from the principal dimensions of VAT to make anti-resonance design more convenient. The validity of applied methods is verified by the comparison of the numerical results obtained from MSC/Nastran and the developed program for two VAT models.

  • PDF

FVT Signal Processing for Structural Identification of Cable-stayed Bridge (사장교의 구조식별을 위한 가진실험 데이터분석)

  • 이정휘;김정인;윤자걸
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.923-929
    • /
    • 2004
  • In this research, Forced Vibration Test(FVT) on a cable stayed bridge was conducted to examine the validity of the frequency domain pattern recognition method using signal anomaly index and artificial neuralnetwork. 7he considering structure, Samchunpo Bridge, located in Sachun-Shi, Kyungsangnam-Do, is a cable stayed bridge with the 436 meter span. The excitation force was induced by a sudden braking of a fully loaded truck. and vortical acceleration signals were acquired at 14 points. The initial 2-dimensional FE-model was developed from the design documents to prepare the training sets for the artificial neural network, and then the model calibration was performed with the field test data. As a result of the model calibration, we obtained the FFT spectrums from the model simulation, which was similar to those from the vibration test. These tests and the simulation data will be used for the structural identification using arbitrarily added masses to the bridge.