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Added Mass for both Vertical and Horizontal Vibration
of Two-Dimensional Cylinders of Curvilinear-Element

Sections with Chines in a Free Surface
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Added masses of two-dimensional cylinders of ecurvilinear-element sections with chines,
which are similar to marked V character ship sections with either single or double chines,
oscillating at high frequency in a free surface of an ideal fluid are calculated for both
vertical and horizontal vibration by employing two particular two-parameter families of
the conformal transformation. The numerical results are graphically presented in the
forms of added mass coefficient curves in terms of the sectional area coefficient and the
half beam-draft ratio together with the section contours derived with the employed trans-
formations, and discussed in comparision with those of the Lewis forms and of straightline-
element sections with single chine for vertical vibration, and, for horizontal vibration,

with those of the Lewis forms.

1. Introduction

The purpose of this work is to give an analytical treatment on calculation of the added mass for both vertical
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and horizontal vibration of ships having marked V type section forms with chines. As the mathematical section
forms two particular two-parameter families of the conformal transformation are chosen. They are, of course,
different from the Lewis forms, and one represents ship sections of single chine and the other those of double
chines.

Various methods based on conformal mapping, since F. M. Lewis’ work [1]** have bsen applied to obtain
added masses of ship sections oscillating in a free surface with the relation that a point P(2) on the contour
of a double ship section in the complex z-plane can be mapped to a point P’() on a unit circle about
the origin in {-plane (Fig. 1) by the Bieberbach’s transformation;

z(C)=R[c+§a2n~lc-wn—n; W
where
g==g iy @
L=8+ip=reit =it for r=1.0 3
z-Plane £-Plane
) .
- 3
‘D(""
J 1
y '
Double Ship Section Unit Circle
Fig. 1. Conformal Mapping cf the Double Ship Secticn into a Unit Circle.
Notation
A = added mass s = arc length along the section contour
agn-1,am= coefficients of the mapping function T = kinetic energy of fluid surrounding the profile
B = breadth of ship section U, V= horizontal and vertical component of velocity

ba = coefficients of complex potential of the profile

bn = complex conjugate of ba w(z)= ¢-+i¢; complex potential

C = added mass coefficient z = Iy
cn =—ibn £ = &+ip
g = the gravitational constant p = mass density of fluid
¢ = sectional area coefficient

H = draught of ship section
@ = angular frequency of oscillation

p-%; half beam-draft ratio

Subscripts:
R = scale factor of the mapping function # = horizontal component
r,§ = polar co-ordinates in {-plane v = vertical component

8 = sactional area of the cylinder ? = for actual ship
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and R positive scale factor. The coefficients a;»_1’s are real and with only odd indices because of the symmetry
of the section contours about both the vertical and horizontal axes.

Deriving a series of ship-like section contours of a two-parameter family with @zn_1=a; and as, called the
Lewis forms, F.M. Lewis [1] calculated two-dimensional added masses for vertical vibration at high frequency
in a free surface of an ideal fluid. C.W. Prohaska [2) also investigated some section contours of another two-
parameter families with @pn_1=a; and a;, ¢; and a;, and a; and a; for vertical vibration. L. Landweber and
M. Macagno [3] gave a unified treatment on the added mass of the Lewis forms for both vertical and
horizontal vibration. They also investigated a three-parameter family characterized with apn_1=a1, a3 and as
[4] and the technique of conformal mapping to obtain the coefficients of the transformation (1) directly with
the aid of high-speed computers [5]. Recently, M. Macagno [6] made a brief comparision of various
techniques of calculating the added mass associated with ship vibration.

The works mentioned in the above were mostly concerned with usual ship sections. Thea Prohaska’s work
was partly concerned with vertical vibration of unusual section forms such as bulbous bow sections,marked V
character sections and marked U character sections. Besides it, Lewis [1] investigated typically unusual rectan-
gular sections and rhombus sections, and K. Wendel [7] rectangular sections with bilge keels. As for the
sections with chines, after an investigation of some typical cases [8>, ].H. Hwang [9), {102, by employing
Schwarz-Christoffel transformation, systematically calculated the added mass of two-dimensional cylinders of
straightline-element sections for vertical vibration.

In this work, the author investigated added mass of the curvilinear-element sections with chines for both
vertical and horizontal vibration. It is well recognized that section forms concaved, or concaved and convexed
slightly, with chines are welcome for medium and high speed beats including planning hulls, and that section

forms of the developable hull surface are apt to have slightly convexed shape in the portion below chine line.

2. Formulation of the problem

2.1 Mathematical representation of the section contours
As the mapping function of the two-parameter family characterizing our preblems, we take
2O =RE+al  +amf™) “

with the condition
0<am<¥1—~ (5
=M=y

from the transformation (1), where m is a positive odd integer.
Then it can be easily seen that the mapping function (4) maps the circular section in z-plane into a uait

circle in {-plane with ai=am=0, the elliptical section with am=0, the hypotrocoidal section not intersect

itself with @;=0 and 0<lam< j,’ and the hypocycloidal section with (—+1) cusps with ;=0 and am:_.}.’;_

Hence, considering the section contcur below waterline and its image, we know that our problems can be
characterized with m=7 for the single chine type curvilinear-element ship section, and m=11 for the double
chine type curvilinear-element ship section. Thus we propose to represent mathematically the zbove mentioned
section contours with two particular two-parameter families defined as follows:
2O =R(C+al ™ +a:l™™) (6)
2O =R+l +anl™t) .

To obtain useful section contours the condition
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Re{z(0)} >Re(2(6)} >0 .
H OSGS‘E‘ 8
0<Im{z(6)}<Im{z(x/2)} ,
must be satisfied. Form Equation (8) it is found that the condition of constraints on a; should be
la <A —mam); m=7 or 11 €)

Now the condition (5) can be specified as follows:

OSamS\;*, when a;=0 |

1 ; m=7 or 11 (10)
Ogam<—m~, when ¢1#0 j

The extreme cases of the available section contours in z-plane with the mapping functions (6) and (7) and the
conditions (9) and (10) are clearly characterized with am=0 (circles) and am=*7;1; (hypocycloids) in case of

a,=0, and with an=0 (elliptical sections) and am=1/(m+a) in case of @;#0. The values of a depend on
the beam-draft ratio and will be discussed further later on.

Refering to Equations (2) and (3), we can write the transformation (6) and (7) in the parametric form
of 8;

2=R{(1-+ay) cos 0+am cos mﬁj}

; = an
y=R{(1—a;) 8in 6 — @ sin mf) m=7or 11
‘where R is, for convenience, to be taken as
R=Q+a+am)™t; m=T7or 1l Q2)

s that the half beam, |x|max or B/2, of the section contours in z-plane may always;become unity. And the
half beam-draft ratio p is obtained by :

p= B _ltertes . g (13
o2H 1—aj+am

where H denotes-draught of the section.

From Equation (13), for given valuss of p, we have

a1=(-§£i—>(l+am); m=7 or 11 (14
and the condition (10) becomes
1 .
0<am<——, when p=1, i.e. a1=0
m 1 i m=T7orll 15)
OSam<-1 , when p=#1, i.e. &1#0
F—Dm+D+m

From Equations (11), and (18) or (14) it is easily observed that, for given values of m and am, the section
contours corresponding to 2;=—§ are those obtainable merely by rotating those derived with a;=+8 through
90 drgree, and that their beam-draft ratios are in inverse relation with each other. The Equation (14) and
conditions (9) and (15) are graphically shown in Fig. 2 for m=7 and in Fig. 3 for m=11.

The sectional area S below waterline of the section contours obtained by Equation (11) will bz turned
out to be

%
S=g fadv="5fe (16)
and the sectional area coefficient ¢

n (1—a—maw’) @ 7
9="4 Utai+an)(1—ai+am) 4 pfa an

where

fa=R2(1—a®—man®); m="T7 or 11 18)
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Fig. 2. Curves of p=const. and ¢=const. Fig. 3. Curves of p=const. and ¢—=const.
in Terms of a; and a; in Terms of a; and an

Since Equation (16) is after the scale factor, it should be interpreted for the actuzsl area cf ship sections S/,

half-beam of which is not unity but B/2, as follows:
,_(BYg_ (B 20
5 ;<7> S‘( 2 ) » a9

The curves of o=const. based on Equation (17) are also shown in Figs. 2 and 3 in terms of « and am

together the curves of p=const..
From Equations (9), (14), (15) and (17), it is clear that the maximum valuz of o will always become

7",
gmax = ’4 (20)
with am—0 which corresponds to an elliptical section, and that, for given valuss of p, the minimum value of o
imits to

h—(Jfl)z(lf <am>ma*>2—’”<“'”f’“if‘}

SR I G 2 > o
min— 4 N pA_.17 3
[1‘\“(’}7_‘_1 )(1+ (Gm)max) +(am)max]
when am limits to
(ﬂ m)m ax T e (22)

F =D+ +m
where m=7 or 11. For each value of p the limitation of the range cf o is shown in Table 1 together with the

correspording value of am.
With known values of p and o which lie within the above range, we can find out the cerresponding values

of a; and am either from Fig. 2 and Fig. 3, or from Equations (13) and (17).
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Table 1. Limits of a» and ¢

#@ =R+ at +al™)
|

() =RE+af "t +aul™h)

|
|
P outer limit | inner limit ‘ outer limit i inner limit
ar ’,' Omax { az Omin l as { Omax ‘ an i Omin
1.00 | | Y7 osis | ! 111 0.6
1.25 0.80 ! 0.12495 } 0. 5499 ' 0.08 0. 6240
1.50 2/3 : 0.11111 ; 0.5727 i 0.07142 0.6400
2.00 0.50 | | 0.09090 |  0.6014 § | 0.05882 0.6600
2.50 0.40 i 0 ‘i 0.7854 | 0.07692 i 0.6185 , 0 } 0.7854 0.05 0.6720
3.00 13 | (all an elliptical | 0.06666 . 0.6300 | (all an elliptical 0.04347 0. 6800
3.50 27 E section) 0.05882 |  0.6382 | section) 0.03846 0.6857
4.00 0.25 | 0.05263 0.6443 f 0.03448 0.€899
5.00 0.20 [ 0.04347 0.6529 Jl 0.02857 0. 6959

2.2 Complex potential and boundary conditions
We assume that the complex potential w(z) which will satisfy the boundary conditions presented may be
obtained in parametric form together with Equation (1) for both vertical and horizontal vibration;

w(:):¢+f¢:§ baln (23)
or

2_Li; 71 (Bue=im 4 b eing) }
2 n=1

I

- - 24
,LE r#{Baemind —b,eint) J @

:
¢ 21 n=1
where ¢ and ¢ are velocity potential and stream function refered to the flow around the oscillaiing two-
dimensional cylinder, respectively.

In case that a body oscillates at one of its principal modes or in simple harmonic motion with a small
amplitude in a free surface, the boundary condition on the free surface becomes [11]

wg=go- @5)

where » iIs an angular frequency and g the gravitational constant, Hence, in case of high frequency, w—co, the
boundary condition (25) on the free surface turns out to be
$=0 (26)

The boundary condition at infinity is also satisfied by the Equation (26).

In case of vertical vibration, the body boundary condition can be satisfied by supposing that the double
section escillates as a single rigid form. Then the boundary condition on the double section turns out to be
(Appendix 1)

g=—Vzr @n
where V is the velocity in y-direction.

In case of horizontal vibration, the body boundary condion can be satisfied by supposing that the upper and
lower halves of the double section instantaneously have velccities of same magnitude but opposed direction.
Then the boundary condition on the double section turns out to be (Appendix 1)

¢=Uly| 8

where U is the velocity in z-direction.
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7
2.3 Kinetic energy of the fluid and added mass
The kinetic energy 7' of a fluid surrounding an oscillating body is caleulated by
I
T=—4 oy (29)

where p is the mass density of the fluid and the integral extends over all the boundaries of the fluid.

Refering to Equations (23) or (24), we write Equation (29) in parametric form of 4, and may evaluate
the integral over the unit circle in Z-plane;

2 ;

S RIEE (30)
However, the integral vanishes over the free surface in both cases of vertical and horizontal vibration hecause
of the condition ¢=0 on that boundary. Therefore the kinetic energy 77 of the fluid below the free surface,
that is, of the actual ship section, is half of that given by Equation (30) and turns out to b: (Appendix 2)

e TP 5 12
T!= 4 ,"szl n bl (€1
Since the added mass A per unit length of the cylinder can be defined by

TI
A s

é (velocity)?

' (32)

the added mass coefficient C refered to the Lewis’ definition and to the scale factor R which makes the length
of a semi-axis to be taken as the basis, B/2 or H, be unity becomes

LA ar
T (zp/2) — mp (veloctity)? (33)
Hence, we cbtain for vertical vibration
qu— TP ¥ L |2
Av= ZVZE n lano (34)
1 & R
CV=‘V2"¢41 n ”)n!' 33
and for horizontal vibration
11H='g‘£r‘z:;::; nlbal? 36)
Cr = lziw 1h,l2 -
H="Tr n=11ﬂ;t)n (37

.4 Added mass for vertical vibration

2
Substituting the right hand sides of Equations (11) and (24) for = and ¢ of the boundary conditien (27),

we obtain for the unit circle
by=—iRV(1+ay) ]
bm=—iRV am; m=7 or 11 ,

(38)

All other b,’s are zero
Hence, from Equations (34) and (35), the added mass and added mass cosficient for vertical vibration turn

out to bs

AV:JTZ‘D'RZ(I‘i‘241"“d]2+7d72) (39)

Cv=R:(1+2a1+a*+7a:®) (40)

for m=7 which represents the single chine type section contours, and



Journal of SNAK

T
AV=“‘28'R2(1+2d1+a12+1ldn2) (41)

Cv=R¥(1+2a1+a®+1lay?) 42)

for m=11 which represents the doubler chine type section contours,
For the calculation of Cv, the scale factor R is to be taken as Equation (12), so that the added mass A’y
of the section contour before the scale factor, that is of the actual ship section half-breadth at free surface of

which is not unity but B/2, should be calculated by
1o 0 (BN
av=cv () (43)

2.5 Added mass for horizontal vibration
From Equation (24) and the boundary condition (28), we know that ¢ should be an even function of 9 and

bs imaginary. Hence, we have ¢ represented by the Fourier cosine series;

dz———blg']:")_:_;.' Ca cOS nf (44
where ba=ica. 5
Then, in case of our problem, coeficient c» can be obtained by

2RU (= . .
= 50{(1—@) sin @ —am sin mf)} cos nf do ; m=7 or 11 (46)

Cn=

by virture of Equation (11).
Evaluation of the above integral shows that

an+1=0 i n=0 1, 2, 3, """
4RU 7 a1— ma } ; m=7 or 11 7
Con=— " ( 11 ¥y +__T"'nz)’ n=1,2,3, e

Hence, by virture of Equations (36), (87) and (45), the added mass and the added mass coefficient for

horizontal vibration can be calculated by

- 8PR_ —nam 2
Ar= E(Z )< 1— 4712 + 4712—) m=7 or 11 (48)
16R? -1 mam 2
CH—*‘*%ZI(ZII)( T—dn2 +W); m=T7 or 11 (49)
Evaluating the Equation (48) and (49), we obtain
8pR?
Ag= (; H{an(l—a)?+2ar(1—a)ar+anaq?} Go)
6
Cu= {an(1~—a1)2+2an(1 — @)@+ apar?) 5
GIY)

where a11=0.25, ay;=0.161111+-, and an=4.064602- (Appendix 3), for m=7 which represents the single
chine type ssction, and

8pR? .
Ap= 1 {“11(1 —ay) +26¥1-11(1*a1)a11+a11.11a112} (52)

C __];(iRz_{ 2
H="13 an(l—ay) +2a1.01(1~a)ay +aiy.11a1,%) (33)

where @i=0.25, a1.41=0.122169--, and a1.1;=6.533984.-- (Appendix 3), for m=11 which represents the
double chine type section.
The scale factor R for this time is to be taken as
R=(1—a1+am); m=T or 11 (54)
so that the added mass A’s# of the section contours before the scale factor, that is of the actual ship section

draught of which is not unity but H, should be calculated by
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A’z&r=(}1f1~7fz£H2 (55)

The added mass coefficient C for both vertical and horizontal vibration may also bs calculated directly by
employing p and ¢ as shown in Appendix 4.

3. Numerical results and discussion

The section contours obtained by the transformation (6) and (7), that is Equation (11}, together with
the conditions of constraints (9) and (10) are shown in Fig. 4 for m=7 and in Fig. 5 for m=11. Those
contours are originally of positive valuzs of @; obtained from Equation (14) by substituting ths half bzam-
draft ratio of

$=1.00, 1.25, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, and 5.00
for p and the value of @ from 0 to the permissible maximum value (15) with an interval of 0.01 for @m.

Rotating the above contours through 90 degree in clockwise sense after z- and y-axis exchangad, we can

now have the section contours of the inverse values of the above half beam-draft ratio, that is,

»=1.00, 0.80, 2/3, 0.50, 0.40, 1/3, 2/7, 0.25 and 0.20
in the same sequence as above. These contours, as mentioned already in the section 2.1, are thosz obtainable
from the same mapping function only by substituting negative values of a3, absolute values of which are same
as those used in derivation of the former original contours. This relation can be easily verified by substituting
1/p for p in Equation (14) and inspecting Equation (11).

For all the section contours mapped in Fig. 4 and Fig. 5, o, Cv and Cx are calculated. The results are
tabulated in Table 3 for m=7 and in Table 4 for m=11 together with the corresponding values of am and
a1. From those tables, curves of Cv=const. and Cw=const. are compiled in terms of p and o, and are shown
in Fig. 6 for m=7 and in Fig. 7 for m=11.

Comparing the numerical results on Cv with those of the Lewis forms and the Prohaska’s compiled data [2]
or the Landweber and Macagno’s {3], we can clearly recognize that the curvilinear-element sections with
chines give considerably greater values of Cv than the Lewis forms for the same values of p and o. It is
observed that the smaller ¢ has, for a given value of p, the bigger rate of increment of Cv over that of the
Lewis forms, and that the smaller p has, for a given value of o, the bigger rate of increment of Cv over that
of the Lewis forms. It is also found that ths rate of increment of Cy of the double-chine type sections over
the Lewis forms is almost twice that of the single-chine type sections for the given values of p and .

Numerically speaking in general, the rate increment of Cv of the curvilinear-element sections over the Lewis
forms is distributed, in case of p below 1.0, between about 5per cent and well over 10 per cent for ¢ below
0.7 and within about 5 per cent for ¢ over 0.7. And it is,in case of p over 1.0, distributed bstween a few
per cent and a little more than 5 per cent for ¢ bzlow 0.7 and within a few per cent for ¢ over 0.7.

To show the above mentioned clearly, Cv curves of the Lewis forms and the curvilinear-element sections with
chines are graphically compared in Fig. 8 for the cases of p=5/3, 1.00 and 0.20. In that figure, Cv curves
of the straightline-clement sectins with single chine from Hwang’s work [9) are also shown for the cases of
»=5/3 and 1.00. Hwang’s numerical calculation did not cover p=0.20.

After an investigation of the added mass for vertical vibration of some typical sections of marked V character,
similar to the author’s series of m=7, Prohaska [2) found that, for given values of p and s, V type sections
always give a greater Cv-value than U type sections, and suggested that, for sections of marked V or U
character, the value of Cv from his compiled data basically for the Lewis forms might be corrected by =5 per

cent. Hwang’s work (9] for the vertical vibration of the straightline-element sections with single chine also

showed the same tendency in general, but the difference of magnitude of Cv is well over the Prohaska’s
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Table. 2. a» and ¢ for (CE)min

(O =RE+all™ +all™)

2()=RE+af +ayl™h)

| J
P T o - B
|' ar ¢ ! an 4

0.20 | 0.0385 0. 6690 0.0337 (0. 6783)*
0.25 ‘ 0. 0359 0. 6887 0.0323 0.6957
2/1 0.0358 0. 6986 0.0314 0.7039
173 0.0345 0.7085 0.0302 0.7150
0.49 ; 0.0328 0.7184 0.0287 0.7242
0.50 0.0303 0.7283 0.0268 0.7334
2,/3 0.0274 {\ 0. 7382 0.0240 0.7425
0.80 0.0253 ? 0.7432 0.0222 , 0.7471
1.00 0.0228 | 0.7481 0.0200 0.7517
1.25 0.0202 ! 0.7521 0.0177 0. 1554
1.50 0.0181 [ 0.7547 \ 0.0159 | 0.7578
2.00 0.0151 ‘ 0.7580 | 0.0132 ‘ 0.7€0)
2.50 0.0129 0.7600 0.0113 0.7627
3.00 0.0113 \ 0.7613 k 0.0039 00,7639
3.50 0.0100 s 0.7623 : 0.0038 ‘1 0.7648
4.00 0.0090 0.7630 | 0.0079 i 0.7655
5.00 } 0.0075 \ 0.7640 '; 0.0056 1 0.7654

(w)* beyo‘nd the applicable range

in all cases of p. In Figs. 6 and 7, (CH)min curves are of those obtained analytically. For givez p, am for
(CH)min, (am)s, is found to be

(an—aim) (1 E‘)

(am)p= — prl ; m=7 or 11 (33)
(an—a )(“‘b**’l'>—(a —dmm)
11 1m P+1 im mm
from
dCa
“dim 0

And from Equations (14), (51) and (33) we know that (CH)mia becomes

0.4021 for m= 7

(Cor)min= {0. 4012 for m=11

in all caszs of p. In Table 2, the valuss of am and o giving (CH)min are shown for each valuz of p. It
should be noted that the Lewis forms give (Ca)min=0.4053 at a3=0, elliptical sections, in all cases of p duz
to aj;=as in Equation (56).

As shown in Fig. 9, the difference of Cu between the author’s sections and the Lewis forms is not so much
significant as that of Cv; below 5par cent. The tendency that the smaller o, for given p, has the greater difference
is same as that of Cy. However, for given o, the greater p gives the more difference. Those sections give
smaller values of Cw than the Lewis forms in cases of both p bzlow 0.4 and ¢ around those giving minimum
values of Cu, and larger values in other cases.

As for the three-dimensional correction factor for calculation of the virtual inertia coefficient by employing
iwo-dimensionally caleulated added mass, the works of F.M. Lewis (1] and J. Lockwood Taylor (127 may be
useful for vertical vibration of such fine ships, and with respect to horizontal vibration, the works of T.

Kumai [13) and J. Lockwood Taylor (147 are available. However, propsr three-dimensional correction factors
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for chine-type hull forms may have to be investigated.

4. Conclusion

To contribute towards more accurate calculation of the added mass for the flexural vibrations ef ships having
marked V character sections with chines, two kinds of series of the mathematical section corresponding to
single chine type and double chine type each are derived by employing two particular two-parameter families
of the conformal transformation, and two-dimensional added mass of those sections are systematically
calculated for both vertical and horizontal vibration at high frequency in a free surface of an ideal fluid.

The numerical results on vertical vibration show that the curvilinear-element sections with chines give
markably different values of the added mass coefficient from those of the Lewis forms. Prohaska’s suggestion
on calculation of added mass for vertical vibration of marked V charater sections based on his general
observation [2] seems not to be of the generality applicable to V character sections with chines, For more
precise calculation of added mass for vertical oscillation of chine type sections, the author’s work and the
Hwang’s work, or either one, depending on the character of the section, will prove to be beneficial.

The numerical results on horizontal vibration show that the curvilinear-element sections give smaller values
of the added mass coefficient than the Lewis forms in cases of both p below 0.4 and ¢ around those giving
minimum values of Cw, and larger values in other cases. In any cases, the difference is not so much as
that in the case of vertical vibration. Since the case of horizontal vibration of chine type sections, as far as
the author awares, has not been handled previously, this work will also prove to be beneficial for the

treatment of ship vibration in that mode.
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Appendix 1

In case of vertical vibration of the double section, the body boundary condition, which also at the time

satisfies the condition (26) on the free surface is

9 0
an ~  on
where n is the direction of the outward normal to the double section. In addition we have the relations
Oy 9z
on 3
and, by the Cauchy-Riemann equations,
o _ 9
on  0s
where s denotes arc length positive in the clockwise sense along the double section. Thus we can write
¢ or
o= Vs

and obtain the boundary condition (27) on the double section.
In case of horizontal vibration of the double section, the boundary condition on the body may be assumed
to be
3% P
an— =0 an ? y> 0

i ox
o~ U 90

Furthermore, we have the relations

dr 3y
on ~ 9s
and, by the Cauchy-Riemann equations,
o _ 3¢
on as
Thus, writting
o) o0y
= Us 30
¢ oy
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we obtain the boundary condition (28) on the double section.

Appendix 2
Evaluation of the integral (30):
T4 (s Gy
From Equation (24), over the unit circle
¢=7 2 (Baeind-+baein?)
L 530 (a4 5rein0)

and with
bn=da+iﬁn, [;n=an_iﬂn }
e*in? =cos nf==i sin nf

Equation (30) becomes
22 oo oo
T= Js)— jo 2—1 (2an cos nf-+2fx, sin nﬂ)‘z:_,‘ln (2atn cos n9-+28 sin nf) df
Integrating term by term, we obtain

T= P53 n lbal?
n=1

Finally, since T” =%~T, we have

T/= 030 bal?

n=1

Appendix 3
Evaluation of Equations (48) and (49):

ma 2
}_,(27:)( 4n2 +m2—242> m=7 or 11

2n —2nm 2nmiam?®
-2 { (anr—1% (1—a)* +‘2(4nZ 1) (4712—7r2)(1 ~aemt (dnf—m2)%

a=1
=ay(1—a)?+2e1m(1—a1)am—+amman’

where
s 2n 1 = 1 1
=2 T 1 4 4 {<2n—1>2‘ (2n+1>2}

1oy, 1 1
4 { = (2n— 1)2+ (2n—1)2 nzi’(g'}z}ll')?}

i

Journal of SNAK.

(80)

(a»

(b

(e)

(d>

31y
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o 1 N )
V {1+:€i @Tl)i_z—_.—f (2717‘_1)2} =0.25

n=1

FNGTEN

ol 2117712 m = 1 1 )
(it —m?)2= 4 22 {(271-—m)2 (2n+m)? |

I

mo 1 - 1 = 1
4 {E Gn—m)? 5, (@ m)? _%;;(zn»%)_?}

m id 1 ¢ | - 1
=\ @ 2 ey~ H @)
m 2 1

4 < (2n—m)?

hence,
/ 1
ara=— o +%;+1+1+ 5 +21~5+~413>=4.0646025---
161 1,1 1 1,01 01,1 13
A=y (81—+49 -"25 + 9 +1+1+ 9 +25—+ te1 v {91 )—6.5339845
and
oo —2nm °° I T SR |
Wm= L D )~ B 1> = {<2n+1>(2n—m> C @D @em) |
L mm ke 1 Ly 1 5 1
T 2(m—1) { ,,Eﬂ “Cn+1)@n—m) ::gm%lj(2n+1)(2n~m) ﬁ:é‘; (2n—1)(2n+m) }
_omm ROy e 1 e 1
T 2(m—1) { = (@n+1)@n—m) "),T;'l (2n—1)(2n-+m) —‘,,‘_':'1’(2n~1)(2n+}n)}
. 4 m-1 1
T L
20m—1) %=1 (2n+1)(2n—m)
hence,

-7 3 7 & 1

=g 1y 24 (z“m-l)(zn—z) T2 =y

AN SN SEE TR
= 12( 505" F.3 T 7, =0- 16111109
-1 8 11

= Fy s 1),‘.:1(2n+1>(2n-11) 20 ),,:1(2;H 1)(11 )

/1 1 1 1 1y .
T2 ( 3.9 "5 V75 T3t 11,1)—0.12216%

Appendix 4

From Equations (13) and (17), @ and c= can be expressed in terms of p and ¢ of the section:

Q=i (mn—i— N (mﬂl)m:) , " “n
; m=7 or

1

am =g (—# VA= i D)

K +mn

(Continued in page 24)
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Appendix 5

Table 3. Numerical Results: z({)=R{+a,{1+a;{")

P am | 0 0.01 | 0.02 | 0.03 | 0.04 |0.04347
—ay | 0.6667| 0.6733 0.68 | 0.6867 0.6933! 0.6957
0.2 o 0785 0.7566 0.7267 0.6958 0.6641 0.6529
Cv | 1.0 | 0.9476) 0.9100 0.8863 0.8758‘ 0.8750

Cw | 0.4053| 0.4038 0.4028 0.4022} 0.4021) 0.4022

am | 0 0.01 0.02 0.03 0.04 | 0.05 0.05263
—a1|{ 0.6 0.606 | 0.612| 0.618 | 0.624 | 0.63 0.6316
0.25 o | 0.7854! 0.7604| 0.7344{ 0.7077] 0.6801 0.6518 | 0.6443
Cv | 1.0 0.9554 0.9212] 0.8968 0.8817) 0.8753 { 0.8750 :
Cw | 0.4053) 0.4038 0.4027| 0. 4022J 0.4021) 0.4025 | 0.4026 :

am| O 0.01 0.02 0.03 0.04 |0.05 0.05882 i
—a1 | 0.5556. 0.5611] 0.5667| 0.5722 0.5778 0.5833 | 0.5882 :

2/7 o| 0.7854 0.7622) 0.7382] 0.7135 0.6879| 0.6618 | 0.6382
Cv | 1.0 0.9594! 0.9273] 0.9033 0.8868| 0.8775 | 0.8750

Cr | 0.4053] 0.4037; 0.4027| 0.4022) 0.4021j 0.4025 | 0.4033

am | O 0.01 0.02 0.03 0.04 |0.05 0.06 0. 06666
—ay| 0.5 0.505 | 0.51 0.515 | 0.52 ]0.525 |0.58 0.5333
1/3 o | 0.7854] 0.7640] 0.7419] 0.7191] 0.6956] 0.6714 | 0.6467 | 0.6300
Cv! 1.0 0.9635, 0.9339] 0.9106; 0.8935{ 0.8821 | 0.8761 | 0.8750
Cu | 0.4053] 0.4037, 0.4026] 0.4021 0.4022) 0.4027 | 0.4036 | 0.4045

am | O l 0.01 0.02 0.03 1 0.04 10.05 | 0.06 0.07692

—ay | O. 4286i 0.4329] 0.4371 O. 4414; 0.4457| 0.45 0.4543 | 0.4615

0.40 o | 0.784 0.7658 0.7455 0.7245 0.7029 0.6807 | 0.6580 | 0.6185
Cv| 1.0 0.9678 0.9408 0.9189, 0.9016 0.8889 | 0.8804 | 0.8750
Cr | 0.4053] 0.4036| 0.4026/ 0.4021] 0.4020| 0.4029 | 0.4040 | 0.4078

am| 0 0.01 | 0.02 | 0.03 ] 0.04 {0.05 |0.06 |0.08 |0.0909
—ay| 0.3333] 0.3367] 0.54 | 0.3433) 0.3467| 0.35 | 0.3533]0.36 |0.3636
0.50 o | 0.7854] 0.7674| 0.7487 0.7294! 0.7096| 0.6892 | 0.6684 | 0.6254 | 0.6014
cvl 1.0 0.9721] 0.9481/ 0.9279] 0.9112| 0.8980 | 0.8879 | 0.8765 | 0. 8750
Cr | 0.4053| 0.4035] 0.4025 0.4021] 0.4024] 0.4033 | 0.4047 | 0.4093 | 0.4126

am | O 0.01 0.02 0.03 0.04 | 0.05 0.06 0.08 0.10 0.11111
—a1| 0.2 0.202 | 0.204 | 0.206 | 0.208 | 0.21 0.212 |0.216 |0.22 0.2222
2/3 g} 0.7854| 0.7687| 0.7514| 0.7336/ 0.7152 0.6964 | 0.6771 | 0.6373 | 0.5961 | 0.5727
Cvl| 1.0 0.9765] 0.9558 0.9378| 0.9223( 0.9093 | 0.8985 | 0.8834 | 0.8760 | 0.8750
Ca | 0.4053 0.4034] 0.4023 0.4021] 0.4027| 0.4041 | 0.4061 | 0.4122 | 0.4206 | 0.4262

am | O 0.01 0.02 0.03 0.04 [0.05 0.06 0.08 0.10 0.12495
~ap | 0.11110 0.1122] 0.1133] 0.1144] 0.1156; 0.1167 | 0.1178 | 0.12 0.1222 | 0.1250
0.80 o | 0.7854! 0.7692| 0.7524] 0.7350! 0.7172 0.6988 | 0.6801 | 0.6414 | 0.6014 | 0.5499
Cv| 1.0 0.9787; 0.9598| 0.9431] 0.9284| 0.9158 | 0.9051 | 0.8889 | 0.8791 | 0.8750
Cu | 0.4053] 0.4032) 0.4022; 0.4022 0.4031! 0.4048 | 0.4074 | 0.4148 | 0.4251 | 0.4412
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P am| 0 0.00 | 0.0z | 0.03 | 0.04 [0.05 |0.06 |0.08 | 0.10 |0.12 |0.14285
a0 0 0 0 0 0 0 0 0 0 0
1.00 o | 0.7854| 0.7694) 0.7528 0.7357, 0.7180| 0.6999 | 0.6814 | 0.6432 | 0.6037 0.5630 | 0.5154

Cv | 1.0 | 0.9810| 0.9639| 0.9485 0.9349] 0.9229 | 0.9124 | 0.8958 | 0.8843 0.8776 | 0.8750
Ca | 0.4053 0.4031 0.4021) 0.4024] 0.4038| 0.4063 | 0.4097 | 0.4195 | 0.4326| 0.4487 | 0.4704
an| 0 0.00 | 0.02 | 003 | 0.04 |0.05 |0.06 |0.08 | 0.10 |0.12495
a| 0.1113f 0.1122] 0.1133 0.1144) 0.1156 0.1167 | 0.1178 | 0.12 | 0.1222 0.1250
1.25 o 0.7854 0.7692\ 0.7524) 0.7350| 0.7172] 0.6988 | 0.6801 | 0.6414 | 0.6014| 0.5499
Cv| 1.0 | 0.9828 0.9672~ 0.9531) 0.9404) 0.9290 | 0.9189 | 0.9022 | 0.8899| 0.8800
Ca | 0.4053 0.4029\ 0.4021) 0.4028 0.4049| 0.4084 | 0.4132 | 0.4262 | 0.4436| 0.4704
am| 0 0.00 | 0.02 | 0.03 | 0.04 [0.05 |0.06 |0.08 | 0.10 |o.11111]
a! 0.2 | 0.202] 0.204] 0.206 | 0.208|0.21 |0.212 | 0.216 | 0.22 |0.2222
1.50 o | 0.7854| 0.7687 0.7514 0.7336] 0.7152} 0.6964 | 0.6771 [ 0.6373 | 0.5961] 0.5727
Cv | 1.0 0.9840‘ 0.9605 0.9562] 0.9441] 0.9332 | 0.9235 | 0.9070 | 0.8944] 0.8889
Cx | 0.4053 0.4027) 0.4021] 0.4034| 0.4064] 0.4111 | 0.4173 | 0.4341 | 0.4562| 0.4704
an | 0 o.00 | 0.02 | 0.03 | 0.o4 |0.05 |o.06 |0.08 | 0.0909
a | 0.3333 0.3367 0.3¢ | 0.3433 0.3467 0.35 |0.3533 ' 0.36 . 0.3636
2.00 o | 0.7854 0.7674) 0.7487, 0.7294 0.7096| 0.6892 | 0.6684 | 0.6254 | 0.6014
Cv | 1.0 | 0.9856] 0.9723 0.9601 0.9490| 0.9388 | 0.9295 [ 0.9136 | 0.9063
Cm | 0.4053 0.4025] 0.4024) 0.4051) 0.4102] 0.4178 | 0.4275 | 0.4532 | 0.4704
am | 0 0.00 | 0.02 | 0.03 | 0.04 |0.05 | 0.06 |0.07692 ! ‘
a| 0.4285 0.4329 0.4371 0.4414 0.4457 0.45 | 0.4543 | 0.4615 1
2.50 o | 0.7854] 0.7658 0.7455 0.7245 0.7029 0.6807 | 0.6580 | 0.6185
cv | 1.0 0‘9865: 0.9741 0.9526 0.9520] 0.9422 | 0.9333 | 0.9200 |
Car | 0.4053, 0.4023 0.403¢| 0.407¢| 0.4152 0.4261 | 0.4402 | 0.4704 |
am | 0O 0.0 | 0.02 | 0.03 | 0.04 [0.05 !0.06 |o0.06666 }
@ 0.5 | 0.505 0.51 | 0.515| 0.52 |0.525 |0.53 |0.5333 ! !
3.00 o 0.7834 0.7640 0.7419) 0.7191 0.6956| 0.6714 | 0.6467 | 0.6300 ’
Cv[ 1.0 ; 0.9872 0.9752) 0.9542| 0.9540| 0.9446 | 0.9:5) | 0.9306
Crr | 0.4053 0.4020 0.4040 0.4105 0.4214) 0.4366 | 0.4556 | 0.4704 1 ;}
an | 0 0.0 | 0.02 | 0.03 | 0.04 |0.05 . 0.05882 ]
a1 | 0.5556| 0.5611) 0.5667 0.5722i 0.5778) 0.5833 | 0.5882 | i
3.50 o | 0.7854 0.7622| 0.7382 0.7135 0.6879] 0.6618 | 0.6382 '
Cv | 1.0 | 0.9876| 0.9761 0.9654] 0.9554| 0.9463 ' 0.9388 1 |
Cr| 0.4053 0.4021) 0.4051 0.4143] 0.4289 0.4487{0.4704, | ‘1 ]
an| 0 0.01 1 0.02 | 0.03 | 0.04 |0.05 |0.05263 } |
a| 0.6 | 0.606 | 0.612’ 0.618 | 0.624 | 0.63 | 0.6316 | |
4.00 o 0.7854 0.7604» 0.7344 0.7077 0.6801] 0.6518 | 0.6443 | 1 |
Cv | 1.0 | 0.9879 0.9767] 0.9662 0.9566] 0.9476 | 0.9453 ! ‘
Ci | 0.4053 0.4023) 0.4068 0.4186 0.4375| 0.4627 | 0.4704 ‘ |
an| © 0.01 | 0.02 | 0.03 | 0.04 |0.04347 |
al\ 0.6667 0.6733‘ 0.68 | 0.6867| 0.6933 0.6957
500 o | 0.7854 0.7566 0.7267] 0.6958 0.6641] 0.6529
Cv| 1.0 | 0.9884 0.9776! 0.9675 0.9581| 0.9550 ‘
CHI 0.4053 0.4025| 0.4108| 0.4295 0.4582) 0.4704 ) |
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Table 4. Numberical Results: z({)=R({{+a:{ ' +aul™D)

p ‘am | O 0.01 0.02 | 0.02857
—ay | 0.6667, 0.6733 0.68 | 0.68571
0.20 o | 0.7854 0.7560, 0.7245 0.6959
Cv | 1.0 0.9511 0.9239f 0.9167

Cr | 0.40531 0.4032 0.4019 0.4013

an | 0 0.0L | 0.02 '0.03 |0.03448
~ay | 0.60 | 0.606, 0.612 0.618 | 0.62069
0.25 o | 0.7854 0.7599 0.7326 0.7035 | 0.6899
Cv | 1.0 | 0.9579] 0.9308 0.9180 | 0.9168
|
r

i
0.4031 0.4018, 0.4013 | 0.4013 ‘
|
|
]

am | 0 0.01 | 0.02 |0.03 |0.03846!
—ay | 0.5556 0.5611 0.5667) 0.5722 | 0.5769
2/7 o | 0.7854 0.7618| 0.7365, 0.7096 | 0.6857
Cv | 1.0 | 0.9514 0.9351| 0.9205 | 0.9167

[

Ca | 0.4053] 0.4031) 0.4017; 0.4012 | 0.4014

am | 0 0.0L | 0.02 |0.03 |0.04 |0.04347
—~a | 0.50 | 0.505| 0.51 | 0.515 | 0.52 | 0.5217
1/3 o | 0.7854] 0.7636] 0.7408 0.7155 | 0.6894 | 0.6800
Ccv | 1.0 | 0.9651 0.9470 0.9242 | 0.9172 | 0.9167
Cx | 0.4053 0.4030 0.4017) 0.4012 | 0.4016 | 0.4020

am | 0O 0.01 0.02 0.03 0.04 0.05 | I
—-a 0.4286, 0.4329) 0.4371) 0.4414 | 0.4457 | 0.4500

0.40 o | 0.7854 0.7654 0.7440| 0.7212, 0.6972 | 0.6720 .
0.9690;, 0.9455 0.9293{ 0.9198 | 0.9167 -

[

I

i

Cv 1.0 ; ! } i

Cu 0.4053} 0-4029} 0.4016 O.40l3i 0.4017 | 0.4033 }

am 0 | 0.01 0.02 ]0.03 0.04 0.05 0.05882 ]:

—a 0.3333 0.3367] 0.34 | 0.3433 | 0.5467 | 0.35 0.3529 | ]

0.50 o 0.7854| 0.7670! 0.7474] 0.7264 | 0.7044 | 0.6812 ;, 0.6600 | l

Cv | 1.0 0.97300 0.9516] 0.9355 | 0.9246 | 0.9184 1 0.9167 \ |

Cu ‘ 0.4053] 0.4028 0.4015| 0.4013 | 0.4022 | 0.4040 | 0. 4064 \ l
am 0 0.01 0.02 0.03 0.04 0.05 0.06 l 0.07 0.07142
—ay 0.2 0.202 | 0.204 | 0.206 | 0.208 | Q.21 0.212 0.214 0.2143

2/3 g { 0.7854] 0.7684] 0.7502] 0.7308 | 0.7104 | 0.6889 0. 6666 0.6433| 0.6400
Cv | 1.0 0.9771) 0.9582; 0.9431 | 0.9316 | 0.9235 0.9186 0.9167] 0.9167
Cr | 0.4053| 0.4026/ 0.4014; 0.4015 | 0.4029 | 0.4056 0.4093 0.4142) 0.4150

am 0 0.01 0.02 |0.03 0.04 0.05 0.06 0.07 0.08
—ay | 0.1111) 0.11221 0.1133! 0.1144 | 0.1156 | 0.1167 .  0.1178 0.1189] 0.12
0.80 o | 0.7854 0.7689| 0.7512f 0.7323 | 0.7125 | 0.6916 0.6699 0.6473  0.6240 I

Cv | 1.0 0.9792] 0.9617) 0.9474 | 0.9359 | 0.9273 0.9213 0.9178 0.9167
Cu | 0.4053] 0.4024 0.4013’ 0.4017 , 0.4037 | 0.4070 0.4117 0.4176] 0.4248
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p am| O 0.0 | 002 [0.03 |o.04 |o0.05 0.06 0.07 | 0.08 0.0909
al 0 o 10 o 0 0 0 0 0 0
1.00 o | 0.7854| 0.7691 0.7516| 0.7330 | 0.7134 | 0.6928 | 0.6713 |  0.6490| 0.6260 |  0.6000

Cv\ 1.0 0.9814‘ 0.9654{ 0.9519 | 0.9408 | 0.9320 | 0.9252 |  0.9205 0.9177 |  0.9166
Cx | 0.4053 0.4022 0.4012) 0.4022 | 0.4050 | 0.4096 | 0.4158 |  0.4236 0.4328 | 0.4443
an | 0 0.01 | 0.02 |0.03 |o0.08 "0.05 L 0.06 0.07 | 0.08 |
a | 0.1111 0.1122{ 0.1133 0.1144 | 0.1156 | 0.1167 | 0.1178 |  0.1189 0.12
1.25 a% 0.7854| 0.7689) 0.7512) 0.7323 0.7125 | 0.6916 . 0.6699 |  0.6473 0.6240
Cv 1.0 | 0.9831 0.9684 0.9558 | 0.9451 | 0.9363 . 0.9293 |  0.9238 0.9200
ca | 0.4083 0.4020 0.401?,\ 0.4031 | 0.4072 0.4135 = 0.4219 |  0.4322) 0.4444
an 0 o001 | 002 l00s |oo04 [0.05 0.06 0.07 | o0.07142
@ 0.20 | 0.202| 0.204 0.205 | 0.208 | 0.21 0.212 0.214 | 0.2143 |
1.50 o | 0.7854 0.7684] 0.7502 0.7308 | 0.7104 | 0.6889 | 0.6666 |  0.6433] 0.6400 !
Cv | 1.0 | 0.983 0'9705} 0.9585 | 0.9482 | 0.9395 | 0.9324 |  0.9266] 0.9259 |
Ca | 0.4053 0.4018 0.4015 0.4043 | 0.4099 | 0.4182 | 0.4200 |  0.4423 0.4444 |
an ' 0 0.00 0.0z 003 |0.04 |0.05 | 0.05882] ! ‘
a1 i 0.3333 0.8367 0.34 0.3433  0.3467 0.35 0.3529 ‘
2.00 o 0.78542 0.7670: 0.7474“ 0.7264 | 0.7044 0.6812; 0. 6600 ‘
Cv | 1.0 | 0.9858 0.9732 0.9620 | 0.9523 | 0.9439  0.9375 . ;
Ca ' 0.4053 0.4015 0.4023 0.4074 | 0.4167 | 0.4298  0.4444 | |
an | 0 0.00 | 0.02 |0.03 |0.04 |0.05 '
@ | 0.4286 0.4329] 0.4371] 0.4414 | 0.4457 | 0.45
2.50 o | 0.7854 0.7654) 0.7440| 0.7212 | 0.6972 | 0.6720
Cv | 1.0 | 0.9867| 0.9748) 0.9642 | 0.9549 | 0.9467
Cx | 0.4053] 0.4012) 0.4035| 0.4117 | 0.4254 | 0.4444 |
am | 0 0.0l | 0.02 10.03 |0.04 |0.04347
e 0.50 | 0.505. 0.5 0.515 |0.52 |0.5217
3.00 o | 0.7854 0.7636 0.7403{ 0.7155 | 0.6894 | 0.6800
Cv | 1.0 | 0.9873 0.9759) 0.9657 { 0.9566 | 0.9537
Ci | 0.4053] 0.4013 0.4054) 0.4172 | 0.4361 | 0.4444
am | 0 0.01 -~ 0.02 |0.03 |0.03846 | |
ai | 0.5556 0.5511| 0.5667 0.5722 | 0.5769 f
3.50 o | 0.7854 0.7618 0.7365 0.7096 | 0.6357 ! :
Cv | 1.0 | 0.9878 0.9767 0.9668 | 0.9592 :
Ca | 0.4053 0.4013 0.4076 0.4237 0.4444
am | 0 0.01 | 0.02 |0.03 | 0.03448 1 |
@ 0.60 | 0.606 | 0.612 |0.618 | 0.62069 1
4.00 o | 0.7854 0.7599 0.7325| 0.7035 | 0.6899
Cv ! 1.0 | 0.9881 0.9773 0.9576  0.9536 : !
Ca | 0.4053 0.4016 0.4105 0.4313 | 0.4444 ]
am | O 0.01 | 0.02 | 0.02857 !
a | 0.6667] 0.6733 0.68 | 0.68571
5.00 o | 0.7854] 0.7560 0.7245/ 0.6959
Cv | 1.0 | 0.9885 0.9781| 0.9700
CH! 0.4053( 0.4023 0.4175 0.4444 | ‘
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where
4 ®
r=(x—40) 1?+40 (b)

Hence, we can calculate Cv and Ca directly by employing p and o, that is, by substituting Equation (57)
for a; and am of the following equations which are consistent with Equations (40) and (51) for m=7, or (42)
and (53) for m=11:

__(1+2a1+a® +mata)

Cv= o +ram? ; m=T7or 11 ©

16 1
CH:,Tm {an(1—a1) +2a1m(1—a1)am+ amm an’};  m=7 or 11 (d)

Here, it is noted again that the values of ¢ for each p must be within the range defined by Equations (20}
and (21), or given in Table 1.



