• Title/Summary/Keyword: Adaxial

Search Result 97, Processing Time 0.026 seconds

Light and Electron Microscopy Studies Elucidating Mechanisms of Tomato Leaf Infection by Pseudocercospora fuligena

  • Zelalem Mersha;Girma Birru;Bernhard Hau
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.181-190
    • /
    • 2023
  • The fungal pathogen Pseudocercospora fuligena, known to affect tomatoes in the tropics and subtropics, has been reported from temperate climates including the United States and Turkey in recent years. In this study, an isolate from fresh tomatoes and the disease it causes were characterized and infection mechanisms investigated. Macroscopically, both sides of tomato leaves show indistinct effuse patches but prolific production of fuliginous lesions is conspicuous on the abaxial side first but also on the adaxial side later on as infection progressed. Microscopically, fascicles of conidiophores (11-128 ㎛ × 3.5-9 ㎛) arising from stromata and conidia with up to 12 septations were observed. Molecular characterization of the isolate revealed high homology (99.8%) to other P. fuligena isolated from tomatoes in Turkey. Out of the 10 media tested, P. fuligena grew significantly well and sporulated better on unsealed tomato oatmeal agar and carrot leaf decoction agar, both supplemented with CaCO3. Direct transfer of conidia from profusely sporulating lesions was the easiest and quickest method of isolation for in-vitro studies. Light and scanning electron microscopy on cleared and intact tomato leaves further confirmed stomatal penetration and egress as well as prevalence of primary and secondary infection hyphae. In situ, blocked stomatal aperture areas of 154, 401, and 2,043 ㎛2 were recorded at 7, 12, and 17 days after inoculation, respectively. With the recent expanded horizon of the pathosystem and its consequential impact, such studies will be useful for a proper diagnosis, identification and management of the disease on tomato worldwide.

Occurrence of Downy Leaf Spot on Juglans regia Caused by Microstroma juglandis in Korea (Microstroma juglandis에 의한 호두나무 흰곰팡이병 발생)

  • Lee, Sang-Hyun;Lee, Seung-Kyu;Park, Ji-Hyun;Cho, Sung-Eun;Shin, Hyeon-Dong
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.386-390
    • /
    • 2011
  • In June 2011, walnuts (Juglans regia) from orchards in Kimcheon and Muan, in southern Korea, were found to exhibit downy mildew-like symptoms of a foliar disease. Whitish polygonal efflorescence was produced on the abaxial surface of affected leaves and discolored light green blotches on the corresponding adaxial surfaces. In the later stage of disease development, diseased tissues collapsed and became necrotic. Based on morphological and cultural characteristics, the causal fungus was identified as Microstroma juglandis. The sequence of ITS rDNA of the present isolate showed 100% similarity with those of M. juglandis obtained from GenBank databases, thus confirming its identity. Pathogenicity tests were conducted on leaves of walnut seedlings, fulfilling Koch's postulates. The disease has been previously reported in North America, Europe, Oceania and some western Asia. This is the first report of downy leaf spot on walnuts in East Asia.

Using Phenolic Compounds and Some Morphological Characters as Distinguishing Factors to Evaluate the Diversity of Perilla Genetic Resources

  • Assefa, Awraris Derbie;Jeong, Yi Jin;Rhee, Ju-hee;Lee, Ho-Sun;Hur, On-Sook;Noh, Jae-Jong;Ro, Na-Young;Hwang, Ae-Jin;Sung, Jung-Sook;Lee, Jae-Eun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.1
    • /
    • pp.40-49
    • /
    • 2020
  • The objectives of this study were to evaluate total phenolic content (TPC) and individual phenolic compounds in leaves of perilla genetic resources, assess whether they could be used as distinguishing factor among germplasms, and evaluate their relationship with some quantitative and qualitative morphological characters. TPC and individual phenolic compounds were determined using Folin-Ciocalteu method and UPLC-PDA system, respectively. Wide variations in TPC (7.99 to 133.70 mgGAE/g DE), rosmarinic acid (ND to 21.05 mg/g DE), caffeic acid (ND to 1.17 mg/g DE), apigenin-7-O-diglucuronide (ND to 2.21 mg luteolin equivalent (mgLUE)/g DE), scutellarein-7-O-glucuronide (ND to 5.25 mg LUE/g DE), and apigenin-7-O-glucuronide (ND to 2.81 mg LUE/g DE) were observed. Intensities of green pigment at abaxial and adaxial leaf surfaces were positively correlated with phenolic compounds whereas leaf length and width had negative correlation. Purple pigmented accessions were shorter in leaf length and width but exhibited higher amount of phenolic compounds compared to green pigmented accessions in most cases. Leaf shape was not related with content of phenolic compounds, color of leaves, and length/width of leaves. TPC and individual phenolic compounds along with morphological characters could be useful distinguishing factors for perilla genetic resources.

Plant Regeneration from Leaf Segment Cultures of Chrysanthemum(Dendranthema grandiflora grandiflora Tzvelev) (국화의 엽절편 배양에 의한 식물체 재생)

  • 이윤경;권영주;이규민;형남인
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.1
    • /
    • pp.59-63
    • /
    • 1999
  • Efficient plant regeneration via shoot organogenesis from in vitro cultured leaf segments of chrysanthemum (Dendranthema grandiflora Tzvelev cv. Namjeon) was achieved. Adventitious shoot formation from leaf explants was greatly influenced by plant growth regulator, leaf age, light condition, explant number per culture vessel, and explant orientation. Leaf segments, obtained from fully expanded young 1-2nd leaves and inoculated 8 explants per petri-dish with adaxial surface contact with MS medium supplemented with 0.5 mg/L BA and 2.0 mg/L NAA, produced 100% regeneration frequency and 13.7 shoots per explant. Regenerated adventitious shoots were successfully rooted in MS medium with 0.1 mg/L NAA. The plantlets were acclimatized in artificial soil mixtures (Vermiculite:Perlite=1:1), and transferred to greenhouse for flowering. The regenerated plants showed normal phenotypes.

  • PDF

Comparative Analysis of the Conserved Functions of Arabidopsis DRL1 and Yeast KTI12

  • Jun, Sang Eun;Cho, Kiu-Hyung;Hwang, Ji-Young;Abdel-Fattah, Wael;Hammermeister, Alexander;Schaffrath, Raffael;Bowman, John L.;Kim, Gyung-Tae
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.243-250
    • /
    • 2015
  • Patterning of the polar axis during the early leaf developmental stage is established by cell-to-cell communication between the shoot apical meristem (SAM) and the leaf primordia. In a previous study, we showed that the DRL1 gene, which encodes a homolog of the Elongator-associated protein KTI12 of yeast, acts as a positive regulator of adaxial leaf patterning and shoot meristem activity. To determine the evolutionally conserved functions of DRL1, we performed a comparison of the deduced amino acid sequence of DRL1 and its yeast homolog, KTI12, and found that while overall homology was low, well-conserved domains were presented. DRL1 contained two conserved plant-specific domains. Expression of the DRL1 gene in a yeast KTI12-deficient yeast mutant suppressed the growth retardation phenotype, but did not rescue the caffeine sensitivity, indicating that the role of Arabidopsis Elongator-associated protein is partially conserved with yeast KTI12, but may have changed between yeast and plants in response to caffeine during the course of evolution. In addition, elevated expression of DRL1 gene triggered zymocin sensitivity, while overexpression of KTI12 maintained zymocin resistance, indicating that the function of Arabidopsis DRL1 may not overlap with yeast KTI12 with regards to toxin sensitivity. In this study, expression analysis showed that class-I KNOX genes were downregulated in the shoot apex, and that YAB and KAN were upregulated in leaves of the Arabidopsis drl1- 101 mutant. Our results provide insight into the communication network between the SAM and leaf primordia required for the establishment of leaf polarity by mediating histone acetylation or through other mechanisms.

Foliar Absorption Rates of 45Ca-labeled Calcium Compounds Applied on Tomato and Citrus Leaves (45Ca 표지 칼슘 화합물별 토마토와 감귤의 엽면 흡수율)

  • Song, Sung-Jun;Kim, Yang-Rok;Han, Seung-Gap;Kang, Young-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.80-85
    • /
    • 2006
  • The foliar injuries and absorption rates of calcium compounds in tomato (Lycopersicon esculentum cv. momotaro) and citrus [Shiranuhi(C. Marc. ${\time}C$. sinensis Osbeck)${\time}C$. reticulata Blanco)] were investigated. 0.3, 0.5 and 1.0% of $CaCl_2$, $Ca(NO_3)_2$, $Ca(H_2PO_4)_2$, Ca-EDTA, Ca formate or Ca acetate solution were applied to the leaves of tomato and citrus. The leaf burns were observed only in the foliar applications of Ca-EDTA and $Ca(H_2PO_4)_2$. Ca-EDTA exhibited more serious foliar injury than CaH2PO4. As applied with $^{45}CaCl_2$, $^{45}Ca(NO_3)_2$, $^{45}Ca$ formate or $^{45}Ca$ acetate, the rates of Ca absorptions by tomato and citrus leaves for 7 days were 17 to 32% and 6.6 to 46%, respectively. It meant that the absorption was differently influenced on calcium compounds. In tomato, the order of Ca foliar absorption was $Ca(NO_3)_2$ > Ca formate = $CaCl_2$ > Ca acetate. Although there was no difference in Ca absorption between the adaxial and abaxial parts of tomato leaves, total absorption was greater in expanded leaves than in expanding ones. On the other hand, in citrus Ca foliar absorption from $Ca(NO_3)_2$ or Ca formate was more active than that from $CaCl_2$ or Ca acetate. In conclusion, $Ca(NO_3)_2$ and Ca formate are recommended for the foliar application of Ca in tomato and citrus in order to increase absorption of Ca into their leaves.

Overexpression of the Downward Leaf Curling (DLC) Gene from Melon Changes Leaf Morphology by Controlling Cell Size and Shape in Arabidopsis Leaves

  • Kee, Jae-Jun;Jun, Sang Eun;Baek, Seung-A;Lee, Tae-Soo;Cho, Myung Rae;Hwang, Hyun-Sik;Lee, Suk-Chan;Kim, Jongkee;Kim, Gyung-Tae;Im, Kyung-Hoan
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.93-98
    • /
    • 2009
  • A plant-specific gene was cloned from melon fruit. This gene was named downward leaf curling (CmDLC) based on the phenotype of transgenic Arabidopsis plants overexpressing the gene. This expression level of this gene was especially upregulated during melon fruit enlargement. Overexpression of CmDLC in Arabidopsis resulted in dwarfism and narrow, epinastically curled leaves. These phenotypes were found to be caused by a reduction in cell number and cell size on the adaxial and abaxial sides of the epidermis, with a greater reduction on the abaxial side of the leaves. These phenotypic characteristics, combined with the more wavy morphology of epidermal cells in overexpression lines, indicate that CmDLC overexpression affects cell elongation and cell morphology. To investigate intracellular protein localization, a CmDLC-GFP fusion protein was made and expressed in onion epidermal cells. This protein was observed to be preferentially localized close to the cell membrane. Thus, we report here a new plant-specific gene that is localized to the cell membrane and that controls leaf cell number, size and morphology.

Suppression of the ER-Localized AAA ATPase NgCDC48 Inhibits Tobacco Growth and Development

  • Bae, Hansol;Choi, Soo Min;Yang, Seong Wook;Pai, Hyun-Sook;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.57-65
    • /
    • 2009
  • CDC48 is a member of the AAA ATPase superfamily. Yeast CDC48 and its mammalian homolog p97 are implicated in diverse cellular processes, including mitosis, membrane fusion, and ubiquitin-dependent protein degradation. However, the cellular functions of plant CDC48 proteins are largely unknown. In the present study, we performed virus-induced gene silencing (VIGS) screening and found that silencing of a gene encoding a tobacco CDC48 homolog, NgCDC48, resulted in severe abnormalities in leaf and shoot development in tobacco. Furthermore, transgenic tobacco plants (35S:anti-NgCDC48), in which the NgCDC48 gene was suppressed using the antisense RNA method, exhibited severely aberrant development of both vegetative and reproductive organs, resulting in arrested shoot and leaf growth and sterile flowers. Approximately 57-83% of 35S:anti-NgCDC48 plants failed to develop mature organs and died at early stage of development. Scanning electron microscopy showed that both adaxial and abaxial epidermal pavement cells in antisense transgenic leaves were significantly smaller and more numerous than those in wild type leaves. These results indicate that NgCDC48 is critically involved in cell growth and development of tobacco plants. An in vivo targeting experiment revealed that NgCDC48 resides in the endoplasmic reticulum (ER) in tobacco protoplasts. We consider the tantalizing possibility that CDC48-mediated degradation of an as-yet unidentified protein(s) in the ER might be a critical step for cell growth and expansion in tobacco leaves.

Effect of simulated Acid rain on Foliar Structural of Changes of Ginkgo biloba and Pinus thunbergii (은행나무와 곰솔에 처리된 인공산성비에 의한 잎의 형태변화)

  • 소웅영
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.79-86
    • /
    • 1995
  • Visible injury symptoms such as necrosis, chlorosis and premature senscence in the leaves of Ginkgo bloba and Pinus thunbergii treated with acid rain of pH 3.2 or below were observed. The epicuticular wax erosions were observed by SEM after exposure to acid rain of pH 2.4 and 3.2 in G. biloba and pH 4.0 below in P. thunbergii. The adaxial epidennal cells and sponge parenchyma cells were compressed, and those were distorted in the leaves of G. biloba treated with simulated acid rain of pH 3.2 or below. However, vascular tissue was intact. With increase of acidity, mesophyll cells were smaller than those of control while intercellular space in mesophyU was increased. In P. thunbergii, sponge parenchyma cells and vascular tissue except epidennis were distorted after exposure to acid rain of pH 2.4. The size change of stomata in foliar injury was not observed, but the stomatal index and size of stomatal aperture in leaves treated with acid rain increased. The stomata of injured leaf were opened in both species examined.amined.

  • PDF

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 1: A Preliminary Study of the Effect of Fog Deposition on Behavior of Particles Deposited on the Leaf Surfaces by Microscopic Observation and Leaf-washing Technique

  • Watanabe, Yoko;Yamaguchi, Takashi;Katata, Genki;Noguchi, Izumi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • To establish the method for investigating the behavior of aerosol particles deposited on the leaf surface against fog water under natural conditions, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analysis and wash water analysis by ion chromatography after the washing treatment were performed using leaves of white birch collected from low part of the tree crown and the top of the tree in Sapporo City, Hokkaido, northern Japan. Each of collected leaves was divided into two parts according to the treatment performed: leaf surface (adaxial side) was 1) untreated, and 2) washed with deionized water with a pipette. In untreated samples, many particles of various shapes, including soil particles and organic debris, were deposited on the surface. Particles containing S were found on the surface of samples collected from only low part of the tree crown. After the washing treatment, SEM-EDX analysis revealed that soil particles and particles containing S had been washed off with water, although some particles such as soil particles and organic debris still remained on the leaf surface. The major anion such as $SO{_4}^{2-}$ was detected in wash water of all samples, although the peak of S in X-ray spectra was not detected from samples collected at top of the tree. The combination of SEM-EDX analysis with wash water analysis indicated that $SO{_4}^{2-}$ was deposited on the leaf surface in dissolved state and/or in state of submicron particles. These results suggested that fog water could remove soil particles and particles containing S and $SO{_4}^{2-}$ from the leaf surfaces, but not all particles. There was no difference in sampling position in the tree crown. Our study suggested that combination with SEM-EDX analysis and wash water analysis would be effective for investigation of the behavior of particles on the leaf surface against fog water.