• 제목/요약/키워드: Adaptive-neuro control

검색결과 129건 처리시간 0.039초

DSPs(TMS320C50)를 이용한 로봇 매니퓰레이터의 적응-신경제어기 실현 (Implementation of the Adaptive-Neuro Control of Robot Manipulator Using DSPs(TMS320C50))

  • 정동연;김용태;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.256-261
    • /
    • 2002
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF

DSP(TMS320C50) 칩을 사용한 산업용 로봇의 적응-신경제어기의 실현 (Implementation of the Adaptive-Neuro Controller of Industrial Robot Using DSP(TMS320C50) Chip)

  • 김용태;정동연;한성현
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.38-47
    • /
    • 2001
  • In this paper, a new scheme of adaptive-neuro control system is presented to implement real-time control of robot manipulator using Digital Signal Processors. Digital signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of therir prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust perfor-mance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for the implementation of real-time control of robot system by the simulation and experi-ment.

  • PDF

Adaptive control based on nonlinear dynamical system

  • Sugisaka, Masanori;Eguchi, Katsumasa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.401-405
    • /
    • 1993
  • This paper presents a neuro adaptive control method for nonlinear dynamical systems based on artificial neural network systems. The proposed neuro adaptive controller consists of 3 layers artificial neural network system and parallel PD controller. At the early stage in learning or identification process of the system characteristics the PD controller works mainly in order to compensate for the inadequacy of the learning process and then gradually the neuro contrller begins to work instead of the PD controller after the learning process has proceeded. From the simulation studies the neuro adaptive controller is seen to be robust and works effectively for nonlinear dynamical systems from a practical applicational points of view.

  • PDF

디지털 시그널 프로세서를 이용한 로봇 매니퓰레이터의 적응-신경제어 (The Adaptive-Neuro Control of Robot Manipulator Using DSPs)

  • 이우송;차보남;김영규;김용태;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.573-578
    • /
    • 2002
  • In this paper, it Is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-negro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF

TMS320C30칩을 사용한 산업용 로봇의 적응-신경제어기 설계 (The Adaptive-Neuro Controller Design of Industrial Robot Using TMS320C3X Chip)

  • 하석흥
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.162-169
    • /
    • 1999
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital Signal Processors. Digital signal processors DSPs. are micro-processors that are particularly developed for variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a biable computatinal tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for implementation of real-time control of robot system by the simulation and experiment.

  • PDF

신경망 제어기를 이용한 복합재 보의 다중 모드 적응 진동 제어 (Adaptive Multi-mode Vibration Control of Composite Beams Using Neuro-Controller)

  • 양승만;류근호;윤세현;이인
    • Composites Research
    • /
    • 제14권1호
    • /
    • pp.39-46
    • /
    • 2001
  • 본 논문에서는 신경망 제어기를 이용하여 복합재 보의 적응 다중 모드 진동 제어에 관한 실험적 연구를 수행하였다. 신경망 제어기는 계산량이 많기 때문에 실시간 적용에 어려움이 따른다. 본 논문에서는 진동 신호를 모드별로 분리하기 위한 적응 노치 필터를 제안하였다. 연결 강도의 개수가 적어서 계산량이 적은 두 개의 신경망 제어기를 이용하여 각 모드의 제어력을 계산하였다. 끝단 질량의 위치의 차이로 인해 고유 진동수가 다른 두 시편 A, B에 대하여 적응 노치 필터와 신경망 제어기를 이용한 적응 진동 제어를 수행한 결과, 두 경우 모두 효과적으로 진동 제어가 이루어졌다. 이러한 결과로 시스템 파라미터의 변환에 대한 신경망 제어기의 적응 진동 제어 성능을 확인할 수 있다.

  • PDF

뉴로-퍼지제어기를 이용한 적응 능동소음제어 (Adaptive Active Noise Control Using Neuro-Fuzzy Controller)

  • 김종우;공성곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2879-2881
    • /
    • 1999
  • This paper presents the adaptive Active Noise Control(ANC) system using the Neuro-Fuzzy controller. In general, the character of noise is time-varing and nonlinear Thus controller must have the adaptivness so that applied in Active Noise Control system to cancel the noise. This paper propose the Neuro-Fuzzy controller trained with back-propagation teaming algorithm to optimize the parameters of controller The objects of this paper are cancel the noise, extract the original(speech) signal polluted by noise and design the Neuro-Fuzzy controller.

  • PDF

EM 알고리즘에 의한 퍼지 규칙생성과 온도 제어 시스템의 설계 (A Fuzzy Rule Extraction by EM Algorithm and A Design of Temperature Control System)

  • 오범진;곽근창;유정웅
    • 조명전기설비학회논문지
    • /
    • 제16권5호
    • /
    • pp.104-111
    • /
    • 2002
  • 본 논문에서는 EM(Expectation-Maximization) 알고리즘을 이용한 자동적인 퍼지 규칙생성과 적응 뉴로-퍼지 제어기(Adaptive Neuro-Fuzzy Controller)의 설계를 제안한다. EM 알고리즘은 가우시안 혼합모델(Gaussian Mixture Model)의 최대우도추정(Maximum Likelihood Estimate)을 위해 사용되어지며 본 논문에서는 규칙생성을 위해 클러스터 중심을 추정한다. 추정된 클러스터는 ANFIS(Adaptive Neuro-Fuzzy Inference System)의 퍼지 규칙과 소속함수를 구축하는데 사용되어진다. 시뮬레이션으로 제안된 적응 뉴로-퍼지 제어기의 성능을 입증하기 위해 목욕물 온도 제어 시스템에 대해 다루고 기존 퍼지 제어기에 비해 적은 규칙의 수와 작은 값의 SAE(Sum of Absolute Error)으로 성능개선을 확인하였다.

온 라인 CFCM 기반 적응 뉴로-퍼지 시스템에 의한 온도제어 (Temperature Control by On-line CFCM-based Adaptive Neuro-Fuzzy System)

  • 윤기후;곽근창
    • 대한전자공학회논문지TE
    • /
    • 제39권4호
    • /
    • pp.414-422
    • /
    • 2002
  • 본 논문에서는 적응 제어 문제를 다루기 위해 CFCM 클러스터링과 퍼지 균등화 기법을 이용하여 새로운 적응 뉴로-퍼지 제어기를 설계하고자 한다. 먼저 오프라인에서 CFCM은 입력데이터의 성질과 출력 패턴의 성질까지도 고려한 퍼지 클러스터링 기법으로 적응 뉴로-퍼지 제어기의 구조동정을 수행한다. 파라미터 동정은 역전과 알고리즘과 RLSE(Recursive Least Square Estimate)을 이용한 하이브리드 학습을 수행한다. 온라인 학습에서는 시변특성으로 인해 전제부 및 결론부 파라미터를 실시간으로 계산된다. 시뮬레이션으로 온 라인 적응 뉴로-퍼지 제어 시스템의 성능을 입증하기 위해 목욕물 온도제어 시스템에 대해 다루고 전형적인 퍼지 제어기에 비해 오프 라인과 온 라인 설계 모두 좋은 성능을 보이고자 한다.

온도 제어 시스템을 위한 뉴로-퍼지 제어기의 설계 (The Design of an Adaptive Neuro-Fuzzy Controller for a Temperature Control System)

  • 곽근창;김성수;이상혁;유정웅
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.493-496
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy controller using the conditional fuzzy c-means(CFCM) methods is proposed. Usually, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Finally, we applied the proposed method to the water path temperature control system and obtained a better performance than previous works.

  • PDF