• 제목/요약/키워드: Adaptive walking

검색결과 55건 처리시간 0.027초

외력 대처 기능을 갖는 사각 보행 로보트 적응 걸음새에 관한 연구 (A study on an adaptive gait for a quadruped walking robot under external forces)

  • 강동오;이연정;이승하;홍예선
    • 전자공학회논문지B
    • /
    • 제33B권9호
    • /
    • pp.1-12
    • /
    • 1996
  • In this paper, we propose an adaptive gait by which a quadruped walking robot can walk against external disturbances. This adaptive gait mechanism makes it possible for a quadruped walking robot to change its gait and accommodate external disturbances form various external environmental factors. Under the assumption that external disturbances can be converted to an external force acting on the body of a quadruped walking robot, we propose a new criterion for the stability margin of a waling robot by using an effective mass center based on the zero moment point under unknown external force. And for a solution of an adaptive gait against external disturbances, an method of altitude control and reflexive direction control is suggested. An algorithmic search method for an optimal stride of the quadruped mehtod, the gait stability margin of a quadruped walking robot is optimized in changing its direction at any instance for and after the reflexive direction control. To verify the efficiency of the proposed approach, some simulaton results are provided.

  • PDF

굴곡진 지형에 대한 CPG 및 GA 결합 기반 적응적인 휴머노이드 보행 기법 (A Combined CPG and GA Based Adaptive Humanoid Walking for Rolling Terrains)

  • 경덕환;서기성
    • 전기학회논문지
    • /
    • 제67권5호
    • /
    • pp.663-668
    • /
    • 2018
  • A combined CPG (Central Pattern Generator) based foot trajectory and GA (Genetic Algorithm) based joint compensation method is presented for adaptive humanoid walking. In order to increase an adaptability of humanoid walking for rough terrains, the experiment for rolling terrains are introduced. The CPG based foot trajectory method has been successfully applied to basic slops and variable slops, but has a limitation for the rolling terrains. The experiments are conducted in an ODE based Webots simulation environment using humanoid robot Nao to verify a stability of walking for various rolling terrains. The proposed method is compared to the previous CPG foot trajectory technique and shows better performance especially for the cascade rolling terrains.

비평탄 지형에서 스토로크 제어법을 이용한 4족 로봇의 보행 알고리즘에 관한 연구 (A study on walking algorithm of quadruped robot used stroke control method in the irregular terrain)

  • 안영명
    • 전자공학회논문지 IE
    • /
    • 제43권4호
    • /
    • pp.52-59
    • /
    • 2006
  • 보행로봇은 평탄 지형에서나 비평탄 지형에서 이동할 수 있다. 지형에 따라 적절한 알고리즘으로 변화시켜 보행할 수 있다. 지금까지의 시각이 없는 로봇에 적합한 걸음새에 대한 논문들은 각 다리의 착지점을 선택하는 방법에 초점을 맞추고 있다. 그러나 본 논문에서는 스트로크와 주기를 변화시켜 비평탄 지형에서도 안정된 등속도 보행을 하는 알고리즘을 제시한다. 이 적응 알고리즘을 적용하여 로봇이 보행을 한다면, 고 기능의 센서를 이용한 복잡한 제어없이 발바닥에 장착된 힘 센서의 신호만으로도 비평탄 지형에서 안정된 등속도 보행이 가능하다. 본 논문에서는 각 다리에 2 자유도를 갖는 4족 로봇으로 평탄 지형과 비평탄 지형에서 물결 걸음새로 보행하는 실험을 하였다. 보행실험을 통하여 적응 알고리즘이 유용함을 증명하였다.

Robust Adaptive Control Simulation of Wire-Suspended Parallel Manipulator

  • Farahani, Hossein S.;Kim, Bo-Hyun;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.46-51
    • /
    • 2004
  • This paper presents an adaptive control method based on parameter linearization for incompletely restrained wire-suspended mechanisms. The main purpose of this control method is utilizing it in a walking assist service robot for elderly people. This method is computationally simple and requires neither end-effector acceleration feedback nor inversion of estimated inertia matrix. In the proposed adaptive control law, mass, moment of inertia and external force and torque on the end-effector are considered as components of parameter adaptation vector. Nonlinear simulation for walking an elderly shows the effectiveness of the parameter adaptation law.

  • PDF

적응적인 휴머노이드 보행을 위한 CPG 궤적 및 GP 관절 보정의 결합 기법 (A Combined CPG Foot Trajectory and GP Joint Compensation Method for Adaptive Humanoid Walking)

  • 조영완;김훈이;서기성
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1551-1556
    • /
    • 2016
  • A combined CPG (Central Pattern Generator) based foot trajectory and GP (Genetic Programming) based joint compensation method is presented for the adaptive humanoid walking. The CPG based foot trajectory methods have been successfully applied to basic slops and variable slops with slow rates, but have a limitation for the steep slop terrains. In order to increase an adaptability of humanoid walking for the rough terrains, a GP based joint compensation method is proposed and combined to the CPG (Central Pattern Generator) based foot trajectory method. The experiments using humanoid robot Nao are conducted in an ODE based Webots simulation environmemt to verify a stability of walking for the various aslope terrains. The proposed method is compared to the previous CPG foot trajectory technique and shows better performances especially for the steep varied slopes.

3축 가속도 센서를 이용한 실시간 걸음 수 검출 알고리즘 (Real-Time Step Count Detection Algorithm Using a Tri-Axial Accelerometer)

  • 김윤경;김성목;노형석;조위덕
    • 인터넷정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.17-26
    • /
    • 2011
  • 본 논문에서는 3축 가속도 센서를 이용하여 사람이 보행 시 발생하는 센서 데이터를 획득하여 실시간 걸음 수 검출이 가능한 웨어러블 디바이스를 개발하였다. 피험자 59명을 대상으로 트레드밀에서 Actical 과 본 연구에서 개발된 디바이스를 착용 후 36분 동안 테스트 프로토콜에 따라 느리게 걷기, 걷기, 빠르게 걷기, 천천히 뛰기, 뛰기, 빠르게 뛰기 등의 다양한 걸음 속력에서 테스트를 진행하였다. 3축 가속도 센서의 X, Y, Z축 출력 값을 하나의 대표 값으로 처리하는 신호벡터크기(Signal Vector Magnitude : SVM)를 사용하였다. 또한 정확한 걸음 수를 검출하기 위해 휴리스틱 알고리즘(Heuristic Algorithm : HA)을 제안하고 적응적인 임계값 알고리즘(Adaptive Threshold Algorithm : ATA), 적응적인 잠금 구간 알고리즘(Adaptive Locking Period Algorithm : ALPA)을 제안한다. 실험결과 제안하는 알고리즘의 걸음 수 인식률은 97.34%로 Actical의 인식률(91.74%)보다 5.6%향상 되었다.

피드백을 결합한 CPG 기반의 적응적인 휴머노이드 로봇 보행 (CPG-based Adaptive Walking for Humanoid Robots Combining Feedback)

  • 이재민;서기성
    • 전기학회논문지
    • /
    • 제63권5호
    • /
    • pp.683-689
    • /
    • 2014
  • The paper introduces dynamic generation technique of foot trajectories for humanoid robots using CPG(Central Pattern Generator) and proposes adaptive walking method for slope terrains combining a feedback network. The proposed CPG based technique generates the trajectory of foot in the Cartesian coordinates system and it can change the step length adaptively according to the feedback information. To cope with variable slope terrains, the sensory feedback network in the CPG are designed using the geometry relationship between foot position and body center position such that humanoid robot can maintain its stability. To demonstrate the effectiveness of the proposed approach, the experiments on humanoid robot Nao are executed in the Webot simulation. The performance and motion features of the CPG based approach are compared and analyzed focusing on the adaptability in slope terrains.

A Comparative Study of Item Difficulty Hierarchy of Self-Reported Activity Measure Versus Metabolic Equivalent of Tasks

  • Choi, Bong-Sam
    • 한국전문물리치료학회지
    • /
    • 제20권3호
    • /
    • pp.89-99
    • /
    • 2013
  • The purposes of this study were: 1) to show the item difficulty hierarchy of walking/moving construct of the International Classification of Functioning, Disability and Health-Activity Measure (ICF-AM), 2) to evaluate the item-level psychometrics for model fit, 3) to describe the relevant physical activity defined by level of activity intensity expressed as Metabolic Equivalent of Tasks (MET), and 4) to explore what extent the empirical activity hierarchy of the ICF-AM is linked to the conceptual model based on the level of energy expenditure described as MET. One hundred and eight participants with lower extremity impairments were examined for the present study. A newly created activity measure, the ICF-AM using an item response theory (IRT) model and computer adaptive testing (CAT) method, has a construct on walking/moving construct. Based on the ICF category of walking and moving, the instrument comprised items corresponding to: walking short distances, walking long distances, walking on different surfaces, walking around objects, climbing, and running. The item difficulty hierarchy was created using Winstep software for 20 items. The Rasch analyses (1-parameter IRT model) were performed on participants with lower extremity injuries who completed the paper and pencil version of walking/moving construct of the ICF-AM. The classification of physical activity can also be performed by the use of METs that is often preferred to determine the level of physical activity. The empirical item hierarchy of walking, climbing, running activities of the ICF-AM instrument was similar to the conceptual activity hierarchy based on the METs. The empirically derived item difficulty hierarchy of the ICF-AM may be useful in developing MET-based activity measure questionnaires. In addition to convenience of applying items to questionnaires, implications of the finding could lead to the use of CAT method without sacrificing the objectivity of physiologic measures.

이족 로봇의 안정한 걸음새를 위한 자기 회귀 웨이블릿 신경 회로망을 이용한 적응 백스테핑 제어 (Adaptive Backstepping Control Using Self Recurrent Wavelet Neural Network for Stable Walking of the Biped Robots)

  • 유성진;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.233-240
    • /
    • 2006
  • This paper presents the robust control method using a self recurrent wavelet neural network (SRWNN) via adaptive backstepping design technique for stable walking of biped robots with unknown model uncertainties. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the biped robots. The adaptation laws for weights of the SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Computer simulations of a five-link biped robot with unknown model uncertainties verify the validity of the proposed control system.

다각 보행 로보트의 서보 제어기 설계 (A servo controller design for a quadruped walking robot)

  • 이연정;여인택;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.75-78
    • /
    • 1987
  • This paper presents a control algorithm of servo controller for a quadruped walking robot as well as its characteristics and requirements. The control algorithm for propelling and terrain adaptive motion is described. The servo controller is being developed as a sub-project of the national project - "Development of a quadruped walking robot ". And then, this paper focuses on an overview of the current state and future works of this sub-project.b-project.

  • PDF