• 제목/요약/키워드: Adaptive sparse representation

검색결과 12건 처리시간 0.019초

Post-Processing for JPEG-Coded Image Deblocking via Sparse Representation and Adaptive Residual Threshold

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1700-1721
    • /
    • 2017
  • The problem of blocking artifacts is very common in block-based image and video compression, especially at very low bit rates. In this paper, we propose a post-processing method for JPEG-coded image deblocking via sparse representation and adaptive residual threshold. This method includes three steps. First, we obtain the dictionary by online dictionary learning and the compressed images. The dictionary is then modified by the histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for sparse coding by combining blind image blocking assessment. At last, to take advantage of human visual system (HVS), the edge regions of the obtained deblocked image can be further modified by the edge regions of the compressed image. The experimental results show that our proposed method can keep the image more texture and edge information while reducing the image blocking artifacts.

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.

Destripe Hyperspectral Images with Spectral-spatial Adaptive Unidirectional Variation and Sparse Representation

  • Zhou, Dabiao;Wang, Dejiang;Huo, Lijun;Jia, Ping
    • Journal of the Optical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.752-761
    • /
    • 2016
  • Hyperspectral images are often contaminated with stripe noise, which severely degrades the imaging quality and the precision of the subsequent processing. In this paper, a variational model is proposed by employing spectral-spatial adaptive unidirectional variation and a sparse representation. Unlike traditional methods, we exploit the spectral correction and remove stripes in different bands and different regions adaptively, instead of selecting parameters band by band. The regularization strength adapts to the spectrally varying stripe intensities and the spatially varying texture information. Spectral correlation is exploited via dictionary learning in the sparse representation framework to prevent spectral distortion. Moreover, the minimization problem, which contains two unsmooth and inseparable $l_1$-norm terms, is optimized by the split Bregman approach. Experimental results, on datasets from several imaging systems, demonstrate that the proposed method can remove stripe noise effectively and adaptively, as well as preserve original detail information.

보간 웨이블렛 기반의 Sparse Point Representation (Sparse Point Representation Based on Interpolation Wavelets)

  • 박준표;이도형;맹주성
    • 대한기계학회논문집B
    • /
    • 제30권1호
    • /
    • pp.8-15
    • /
    • 2006
  • A Sparse Point Representation(SPR) based on interpolation wavelets is presented. The SPR is implemented for the purpose of CFD data compression. Unlike conventional wavelet transformation, the SPR relieves computing workload in the similar fashion of lifting scheme that includes splitting and prediction procedures in sequence. However, SPR skips update procedure that is major part of lifting scheme. Data compression can be achieved by proper thresholding method. The advantage of the SPR method is that, by keeping even point physical values, low frequency filtering procedure is omitted and its related unphysical thresholing mechanism can be avoided in reconstruction process. Extra singular feature detection algorithm is implemented for preserving singular features such as shock and vortices. Several numerical tests show the adequacy of SPR for the CFD data. It is also shown that it can be easily extended to nonlinear adaptive wavelets for enhanced feature capturing.

Multi-feature local sparse representation for infrared pedestrian tracking

  • Wang, Xin;Xu, Lingling;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1464-1480
    • /
    • 2019
  • Robust tracking of infrared (IR) pedestrian targets with various backgrounds, e.g. appearance changes, illumination variations, and background disturbances, is a great challenge in the infrared image processing field. In the paper, we address a new tracking method for IR pedestrian targets via multi-feature local sparse representation (SR), which consists of three important modules. In the first module, a multi-feature local SR model is constructed. Considering the characterization of infrared pedestrian targets, the gray and edge features are first extracted from all target templates, and then fused into the model learning process. In the second module, an effective tracker is proposed via the learned model. To improve the computational efficiency, a sliding window mechanism with multiple scales is first used to scan the current frame to sample the target candidates. Then, the candidates are recognized via sparse reconstruction residual analysis. In the third module, an adaptive dictionary update approach is designed to further improve the tracking performance. The results demonstrate that our method outperforms several classical methods for infrared pedestrian tracking.

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

SAR Image De-noising Based on Residual Image Fusion and Sparse Representation

  • Ma, Xiaole;Hu, Shaohai;Yang, Dongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3620-3637
    • /
    • 2019
  • Since the birth of Synthetic Aperture Radar (SAR), it has been widely used in the military field and so on. However, the existence of speckle noise makes a good deal inconvenience for the subsequent image processing. The continuous development of sparse representation (SR) opens a new field for the speckle suppressing of SAR image. Although the SR de-noising may be effective, the over-smooth phenomenon still has bad influence on the integrity of the image information. In this paper, one novel SAR image de-noising method based on residual image fusion and sparse representation is proposed. Firstly we can get the similar block groups by the non-local similar block matching method (NLS-BM). Then SR de-noising based on the adaptive K-means singular value decomposition (K-SVD) is adopted to obtain the initial de-noised image and residual image. The residual image is processed by Shearlet transform (ST), and the corresponding de-noising methods are applied on it. Finally, in ST domain the low-frequency and high-frequency components of the initial de-noised and residual image are fused respectively by relevant fusion rules. The final de-noised image can be recovered by inverse ST. Experimental results show the proposed method can not only suppress the speckle effectively, but also save more details and other useful information of the original SAR image, which could provide more authentic and credible records for the follow-up image processing.

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

Adaptive Selective Compressive Sensing based Signal Acquisition Oriented toward Strong Signal Noise Scene

  • Wen, Fangqing;Zhang, Gong;Ben, De
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3559-3571
    • /
    • 2015
  • This paper addresses the problem of signal acquisition with a sparse representation in a given orthonormal basis using fewer noisy measurements. The authors formulate the problem statement for randomly measuring with strong signal noise. The impact of white Gaussian signals noise on the recovery performance is analyzed to provide a theoretical basis for the reasonable design of the measurement matrix. With the idea that the measurement matrix can be adapted for noise suppression in the adaptive CS system, an adapted selective compressive sensing (ASCS) scheme is proposed whose measurement matrix can be updated according to the noise information fed back by the processing center. In terms of objective recovery quality, failure rate and mean-square error (MSE), a comparison is made with some nonadaptive methods and existing CS measurement approaches. Extensive numerical experiments show that the proposed scheme has better noise suppression performance and improves the support recovery of sparse signal. The proposed scheme should have a great potential and bright prospect of broadband signals such as biological signal measurement and radar signal detection.

Dynamic Synchronous Phasor Measurement Algorithm Based on Compressed Sensing

  • Yu, Huanan;Li, Yongxin;Du, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.53-76
    • /
    • 2020
  • The synchronous phasor measurement algorithm is the core content of the phasor measurement unit. This manuscript proposes a dynamic synchronous phasor measurement algorithm based on compressed sensing theory. First, a dynamic signal model based on the Taylor series was established. The dynamic power signal was preprocessed using a least mean square error adaptive filter to eliminate interference from noise and harmonic components. A Chirplet overcomplete dictionary was then designed to realize a sparse representation. A reduction of the signal dimension was next achieved using a Gaussian observation matrix. Finally, the improved orthogonal matching pursuit algorithm was used to realize the sparse decomposition of the signal to be detected, the amplitude and phase of the original power signal were estimated according to the best matching atomic parameters, and the total vector error index was used for an error evaluation. Chroma 61511 was used for the output of various signals, the simulation results of which show that the proposed algorithm cannot only effectively filter out interference signals, it also achieves a better dynamic response performance and stability compared with a traditional DFT algorithm and the improved DFT synchronous phasor measurement algorithm, and the phasor measurement accuracy of the signal is greatly improved. In practical applications, the hardware costs of the system can be further reduced.