• 제목/요약/키워드: Adaptive sliding-mode control

검색결과 245건 처리시간 0.039초

포수 조준경 안정화 장치의 슬라이딩 모드 적응 제어기 설계 (Sliding Mode Adaptive Control of the Gunner's Primary Stabilized Head Mirror)

  • 계중읍;성기종;이원구;이만형
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.109-117
    • /
    • 1999
  • In this paper, a direct adaptive control, based on Lyapunov Function Candidate, is applied to a nonlinear Gunner's Primary Stabilized Head Mirror system to derive a parameter adaptation scheme; furthemore, a nonlinear sliding mode control, but also compensating the error in identification of the parameters which are even varying of have uncertain values. The performance of the adaptive controller is determined by the tracking ability to a desired model under some disturbances and the slowly varying parameters of the system. Both adaptive scheme and sliding mode play an important fole in the improvement of the nonlinear system control.

  • PDF

이산 적응슬라이딩 모드 제어를 이용항 전력계통 안정화 장치에 관한 연구 (A study on the power system stabilizer using discrete-time adaptive sliding mode control)

  • 박영문;김욱
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.175-184
    • /
    • 1996
  • In this paper the newly developed discrete-time adaptive sliding mode control method is proposed and applied to the power system stabilization problem. In contrast to the conventional continuous-time sliding mode controller, the proposed method is developed in the discrete-time domain and based on the input/output measurements instead of the continuous-time and the full-states feedback, respectively. Because the proposed control method has the adaptivity property in addition to the natural robustness property of the sliding mode control, it is possible to design the power system stabilizer which can overcome both the minor variations of the parameters of the power system and the diverse operating conditions and faults of the power system. Mathematical proof and the various computer simulations are done to verify the performance and stability of the proposed method.

  • PDF

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

로봇 매니퓰레이터의 추적 제어를 위한 퍼지 적응 슬라이딩 모드 제어기 (A Fuzzy Adaptive Sliding Mode Controller for Tracking Control of Robotic Manipulators)

  • 이진용;강희준
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.555-561
    • /
    • 2012
  • This paper describes the design of a fuzzy adaptive sliding mode controller for tracking control of robotic manipulators. The proposed controller incorporates a modified traditional sliding mode controller to drive the system state to a sliding surface and then keep the system state on this surface, and a fuzzy logic controller to accelerate the reaching phase. The stability of the control system is ensured by using Lyapunov theory. To verify the effectiveness of the proposed controller, computer simulation is conducted for a five-bar planar robotic manipulator. The simulation results show that the proposed controller can improve the reaching time and eliminate chattering of the control system at the same time.

로봇 머니퓰레이터에서의 수렴속도 향상을 위한 적분 슬라이딩 모드 기반 적응 시간 제어 기법 (Adaptive Time-delayed Control with Integral Sliding-mode Surface for Fast Convergence Rate of Robot Manipulator)

  • 백재민;강민석
    • 대한임베디드공학회논문지
    • /
    • 제16권6호
    • /
    • pp.307-312
    • /
    • 2021
  • This paper proposes an adaptive time-delayed control approach with the integral sliding-mode surface for the fast convergence rate of robot manipulators. Adaptive switching gain aims to guarantee the system stability in such a way as to suppress time-delayed estimation error in the proposed control approach. Moreover, it makes an effort to increase the convergence ability in reaching the phase. An integral sliding-mode surface is employed to achieve a fast convergence rate in the sliding phase. The stability of the proposed one is proved to be asymptotically stable in the Lyapunov stability. The efficiency of the proposed control approach is illustrated with a tutorial example in robot manipulator, which is compared to that of the existing control approach.

SRM 센서리스 구동시스템을 위한 적응 슬라이딩 모드 관측기 연구 (A Study of Adaptive Sliding Mode Observer for a Sensorless Drive System of SRM)

  • 오주환;이진우;권병일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권12호
    • /
    • pp.691-699
    • /
    • 2004
  • SRM(Switched Reluctance Motor) drives require the accurate position information of the rotor. These informations are generally provided by a tacho generator or digital shaft-position encoder These speed sensors lower the system reliability and require special attention to noise. This paper describes a new approach to estimating SRM speed from measured terminal voltages and currents for speed sensorless control. The described method is based on the sliding mode observer. The rotor speed and position observers are estimated by the adaptation law using the real and estimated currents. However, the conventional adaptive sliding mode observer based on the variable structure control theory has some disadvantages that the estimated values including the high-frequency chattering and the steady state error generated due to the infinite feedback gain chosen and the discontinuous control input. To reduce the chattering and steady state error, an integrator is also inserted in the sliding mode observer strategy. The described adaptive sliding mode observer decreases the vibration to the switching hyper-plane of the sliding mode by adding integrator. The described methodology incorporates the Lyapunov algorithm to drive the rotor speed and the stator resistance such that it can overcome the problem of sensitivity in the face of SRM parameter variation. Also, without any mechanical information. The rotor speed of SRM is obtained form adaptive scheme. The described method is verified through the simulation and experiment.

An Indirect Decoupled Adaptive Fuzzy Sliding-Mode Control through width adaptation

  • Kim, Dowoo;Yang, Haiwon;Han, Hongsuck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.62.4-62
    • /
    • 2002
  • $\textbullet$ Contents 1. Introduction $\textbullet$ Contents 2. System Description $\textbullet$ Contents 3. Decoupled Sliding Mde Control $\textbullet$ Contents 4. Decoupled Adaptive Fuzzy Sliding Mode Control through width adaptation $\textbullet$ Contents 5. Simulation Result $\textbullet$ Contents 6. Conclusion

  • PDF

궤환선형화된 STT 미사일의 불확실성 보상을 위한 적응 슬라이딩 모드 제어 (Adaptive Sliding Mode Control for Compensation of Uncertainty in Feedback Linearized Skid-to-Turn (STT) Missiles)

  • 김민수;좌동경;최진영
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.267-274
    • /
    • 1999
  • This paper proposes an adaptive sliding mode control scheme for an autopilot design of Skid-to-Turn (STT) missiles. The feedback linearization controller eliminates nonlinear terms in STT dynamics and makes the entire system linear. But the modeling errors in dynamics and the external disturbances exert bad influence on the performance of the feedback linearization controller. To handle these uncertainties, an adaptive control scheme is developed, where a bound of the uncertainties is estimated by an adaptive law based on a sliding surface. The asymptotic output tracking is proved by using the Lyapunov stability theory. Simulations for STT missiles illustrate the validity of the proposed scheme.

  • PDF

Design of Adaptive Fuzzy Sliding Mode Controller based on Fuzzy Basis Function Expansion for UFV Depth Control

  • Kim Hyun-Sik;Shin Yong-Ku
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.217-224
    • /
    • 2005
  • Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system because the UFV contains both pitch and depth angle variables as well as multiple control planes, it requires robustness because of the possibility that it may encounter uncertainties such as parameter variations and disturbances, it requires a continuous control input because the system that has reduced power consumption and acoustic noise is more practical, and further, it has the speed dependency of controller parameters because the control forces of control planes depend on the operating speed. To solve these problems, an adaptive fuzzy sliding mode controller (AFSMC), which is based on the decomposition method using expert knowledge in the UFV depth control and utilizes a fuzzy basis function expansion (FBFE) and a proportional integral augmented sliding signal, is proposed. To verify the performance of the AFSMC, UFV depth control is performed. Simulation results show that the AFSMC solves all problems experienced in the UFV depth control system online.

2차 슬라이딩 모드를 이용한 불확실성을 갖는 비선형 시스템의 간접적응 자기조정 퍼지제어 (Indirect Adaptive Self-Regulating Fuzzy Control of Uncertain Nonlinear Systems Using Second Order Sliding Mode)

  • 박원성;양해원;정기철;김도우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1716-1717
    • /
    • 2007
  • In this paper, a second order fuzzy sliding mode control that combines with a adaptive self-regulating technique is proposed for a nonlinear system with unknown dynamics. The chattering effect that is a representative disadvantage of the sliding mode control is avoided by using the second order sliding mode control instead of the first order sliding mode control. The proposed sub-controller is composed of the equivalent control that is approximated by an online rule regulation sheme and the hitting control that is used to constrain the states of the sub-system to maintain on the sub-sliding surface and used to guarantee the system robustness. Simulation results are presented to show the effectiveness of the proposed controller

  • PDF