KSII Transactions on Internet and Information Systems (TIIS)
/
제10권9호
/
pp.4386-4404
/
2016
Most existing salient object detection algorithms commonly employed segmentation techniques to eliminate background noise and reduce computation by treating each segment as a processing unit. However, individual small segments provide little information about global contents. Such schemes have limited capability on modeling global perceptual phenomena. In this paper, a novel salient object detection algorithm is proposed based on region merging. An adaptive-based merging scheme is developed to reassemble regions based on their color dissimilarities. The merging strategy can be described as that a region R is merged with its adjacent region Q if Q has the lowest dissimilarity with Q among all Q's adjacent regions. To guide the merging process, superpixels that located at the boundary of the image are treated as the seeds. However, it is possible for a boundary in the input image to be occupied by the foreground object. To avoid this case, we optimize the boundary influences by locating and eliminating erroneous boundaries before the region merging. We show that even though three simple region saliency measurements are adopted for each region, encouraging performance can be obtained. Experiments on four benchmark datasets including MSRA-B, SOD, SED and iCoSeg show the proposed method results in uniform object enhancement and achieve state-of-the-art performance by comparing with nine existing methods.
A two-dimensional unsteady inviscid flow solver has been developed for the simulation of complex geometric configurations on adaptive Cartesian meshes. Embedded condition was used for boundary condition and a predictor-corrector explicit time marching scheme was used for time-accurate numerical simulation. The Cartesian mesh generator, which was previously developed for steady problem, was used grid generation for unsteady flow. The solver was based on ALE formulation for body motion. For diminishing the effects of cut-cells, the cell merging method was used. Using cell merging method, it was eliminated the CFL constraints. The conservation problem, which is caused cell-type variation around region swept by solid boundary, was also solved using cell merging method. The results are presented for 2D circular cylinder and missile launching problem.
본 논문에서는 영역 병합 방법을 사용하여 가변하는 국부 적응 창의 크기를 결정하는 새로운 알고리즘을 제안한다. 잡음 제거를 위한 한 점을 포함하고 있는 영역은 중복되지 않게 부분 영역으로 분할된다. 적절한 부분 영역을 선택하여 잡음 제거를 위한 국부 적응 창을 결정한다. 제안 방법에서는 거의 임의의 모양을 가지는 창을 얻을 수 있다. 모의실험결과에서 제안 방법이 다른 웨이블릿 기반 잡음 제거 방법보다 우수함을 보인다.
본 논문에서는 카메라로부터 획득 되어진 비디오 시퀀스로부터 다중 움직임 객체와 배경을 분할하고 시공간 정보에 기반 한 객체 추적 방법을 제안한다. 제안한 방법은 3단계로 구성되어 있다. 먼저 입력 비디오 시퀀스로부터 프레임 사이의 차를 이용한 움직임 영역과 움직임이 존재하지 않는 영역을 구분하여 적응적 경계간을 추출한다. 두 번째는 참조 배경영상과 적응적 경계값을 이용하여 움직임이 존재하는 영역으로부터 개략적 객체 분할을 수행하며, 분할된 이진영상에 형태학적 영역 병합 알고리즘을 적용하여 객체 병합을 수행하였다. 마지막으로 분할된 객체에 시공간 정보를 이용하여 객체에 임의의 ID를 할당하여 추적하였다. 카메라로부터 획득되어진 비디오 시퀀스를 이용한 실험에서 객체들의 분할 및 추적의 효율성과 시스템의 유용성을 확인하였다.
Abstract - In this paper, a segmentation method for brain Magnetic Resonance(MR) image using region clustering technique with statistical distribution of gradient image and fuzzy rules is described. The brain MRI consists of gray matter and white matter, cerebrospinal fluid. But due to noise, overlap, vagueness, and various parameters, segmentation of MR image is a very difficult task. We use gradient information rather than intensity directly from the MR images and find appropriate thresholds for region classification using gradient approximation, rayleigh distribution function, region clustering, and merging techniques. And then, we propose the adaptive fuzzy rules in order to extract anatomical structures and diseases from brain MR image data. The experimental results shows that the proposed segmentation algorithm given better performance than traditional segmentation techniques.
본 논문은 적응적 양자화 컬러 수와 적응적 병합 임계값을 이용하여 순차적으로 영역을 병합하여 영역의 경계를 보존하며 영상을 분할하는 방법을 제안한다. 제안방법은 먼저 PSNR을 이용하여 영상에 따라 다른 양자화 컬러 수로 영상을 벡터 양자화 한다. 그리고 양자화 영상을 이용하여 초기 영역을 설정한 후 CIE Lab와 RGB 컬러 공간에서 순차적으로 유사한 영역을 병합하여 영상의 주요 영역들로 분할한다. 병합의 각 단계에서는 유사성의 척도로 인접 영역의 컬러 거리를 사용하며 병합 임계값은 분할된 영역과 원영상의 컬러 거리의 평균과 평균 변화량을 이용하여 적응적으로 구하였다. 또한 RGB 컬러 공간에서의 병합 영상이 주요 영역 단위로 병합되지 않은 경우 후처리로서 CIE Lab 영역에서 다시 한번 병합을 수행한다. 이때 초기 영역 영상과 RGB 컬러 공간에서의 병합 영상의 영역간의 컬러 거리를 이용하여 병합 유무를 결정한다. 실험 결과는 제안방법에 의한 결과 영상이 주요 객체를 중심으로 분할되며 객체의 경계가 잘 보존됨을 보여준다. 또한 객관적인 척도에서도 기존의 방법에 비해 좋은 결과를 보여준다.
An unsupervised region based image segmentation algorithm implemented with a pyramid structure has been developed. Rather than depending on thraditional local splitting and merging of regions with a similarity test of region statistics, the algorithm identifies the homogenous and boundary regions at each level of pyramid, then the global parameters of esch class are estimated and updated with values of the homogenous regions represented at the level of the pyramid using the mixture distribution estimation. The image is then classified through the pyramid structure. Classification results obtained for both simulated and SPOT imagery are presented.
International journal of advanced smart convergence
/
제11권4호
/
pp.81-87
/
2022
In this paper, we propose a watershed algorithm that applies a high-frequency enhancement filter to emphasize the boundary and a local adaptive threshold to search for minimum points. The previous method causes the problem of over-segmentation, and over- segmentation appears around the boundary of the object, creating an inaccurate boundary of the region. The proposed method applies a high-frequency enhancement filter that emphasizes the high-frequency region while preserving the low-frequency region, and performs a minimum point search to consider local characteristics. When merging regions, a fixed threshold is applied. As a result of the experiment, the proposed method reduced the number of segmented regions by about 58% while preserving the boundaries of the regions compared to when high frequency emphasis filters were not used.
질의 이미지의 시각적 특징이 사용자의 상위 수준 개념을 잘 표현하지 못하기 때문에 이미지 검색 시스템의 성능은 보통 매우 낮다. 의미적으로 유사한 이미지들이 매우 다른 시각적 특징을 보일 수도 있으며 따라서 여러 개의 군집에 분산될 수 있다. 본 논문에서는 영역기반 이미지 검색과 군집-합병을 이용한 새로운 적합성 피드백 방법을 결합한 내용기반 이미지 검색 방법을 제안한다. 주요 목표는 의미적 차이를 줄이기 위해 의미적으로 관련된 군집들을 찾는 것이다. 제안된 방법은 영역기반 군집 과정과 군집-합병 과정으로 이루어진다. 적합한 이미지들의 모든 분할된 영역들을 의미적으로 관련된 계층적인 군집으로 구성한다. 잠재된 군집의 개수를 결정하고 근접한 군집들을 합병한 후 최종 군집의 대표점들로 다중 질의를 표현한다. 군집-합병 과정에서 군집의 개수를 찾고 고차원에서 특이점 문제를 해결하기 위하여 호텔링의 $T^2$ 대신에 v개의 주성분을 이용하는 $T_v^2$를 적용하였으며 $T^2$의 성능과 $T_v^2$의 성능의 차이가 없음을 보인다. 실험 결과는 제안된 방법이 내용기반 이미지 검색 시스템의 성능을 개선하는 데 효율적임을 보여준다.
본 논문은 비디오 영상에서 움직이는 물체를 분할하는 방법을 제안한다. 물체들의 크기가 작거나 서로 겹쳐있을 경우(occlusion), 또는 잡음이 많은 경우에도 안정적인 이 방법은 움직임 검출(motion detection)과 움직임 분할(motion segmentation) 두 단계로 구성되어 있다. 움직임 검출을 하기 위하여 인접 영상간의 차영상(difference image) 분석을 통해 움직임이 있는 부분을 추출하며, 이때 적응적 임계치 방법을 이용하여 빛의 변화나 노이즈가 포함된 환경에서도 안정적으로 추출한다. 움직임 분할 단계에서는 움직임이 검출된 부분을 초기영역으로 분할 한 뒤, 이 영역들의 모션정보에 따라 이웃 한 영역들을 병합함으로써 독립적으로 움직이는 물체를 분할한다. 이러한 방법은 검출된 영역에 대해서만 움직임 분할을 함으로 많은 계산효과를 얻을 수 있으며 실제 도로영상에서 제안된 방법을 실험해본 결과 비디오 감시시스템에 적합함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.