• Title/Summary/Keyword: Adaptive power saving mechanism

Search Result 4, Processing Time 0.016 seconds

An Adaptive Power Saving Mechanism in IEEE 802.11 Wireless IP Networks

  • Pack Sangheon;Choi Yanghee
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.126-134
    • /
    • 2005
  • Reducing energy consumption in mobile hosts (MHs) is one of the most critical issues in wireles/mobile networks. IP paging protocol at network layer and power saving mechanism (PSM) at link layer are two core technologies to reduce the energy consumption of MHs. First, we investigate the energy efficiency of the current IEEE 802.11 power saving mechanism (PSM) when IP paging protocol is deployed over IEEE 802.11 networks. The result reveal that the current IEEE 802.11 PSM with a fixed wakeup interval (i.e., the static PSM) exhibits a degraded performance when it is integrated with IP paging protocol. Therefore, we propose an adaptive power saving mechanism in IEEE 802.11-based wireless IP networks. Unlike the static PSM, the adaptive PSM adjusts the wake-up interval adaptively depending on the session activity at IP layer. Specifically, the MH estimates the idle periods for incoming sessions based on the exponentially weighted moving average (EWMA) scheme and sets its wake-up interval dynamically by considering the estimated idle period and paging delay bound. For performance evaluation, we have conducted comprehensive simulations and compared the total cost and energy consumption, which are incurred in IP paging protocol in conjunction with various power saving mechanisms: The static PSM, the adaptive PSM, and the optimum PSM. Simulation results show that the adaptive PSM provides a closer performance to the optimum PSM than the static PSM.

Adaptive Power Saving Mechanism of Low Power Wake-up Receivers against Battery Draining Attack (배터리 소모 공격에 대응하는 저전력 웨이크업 리시버의 적응형 파워 세이빙 메커니즘)

  • So-Yeon Kim;Seong-Won Yoon;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.393-401
    • /
    • 2024
  • Recently, the Internet of Things (IoT) has been widely used in industries and daily life that directly affect human safety, life, and assets. However, IoT devices, which need to meet low-cost, lightweight, and low-power requirements, face a significant problem of shortened battery lifetime due to battery draining attacks and interference. To solve this problem, the 802.11ba standard for the Wake-up Receiver (WuR) has emerged, this feature is playing a crucial role in minimizing energy consumption. However, the WuR protocol did not consider security mechanisms in order to reduce latency and overhead. Therefore, in this study, anAdaptive Power Saving Mechanism (APSM) is proposed for low-power WuR to counter battery draining attacks. APSM can minimize abnormally occurring power consumption by exponentially increasing power-saving time in environments prone to attacks. According to experimental results, the proposed APSM improved energy consumption efficiency by a minimum of 13.77% compared to the traditional Legacy Power Saving Mechanism (LPSM) when attack traffic ratio is 10% or more of the total traffic.

Dynamic Adjustment of Ad hoc Traffic Indication Map(ATIM) window to save Power in IEEE 802.11 DCF

  • Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.343-347
    • /
    • 2008
  • Wakeup schemes that turn off sensors' radio when communication is not necessary have great potential in energy saving. At the start of each beacon interval in the IEEE 802.11 power saving mode specified for DCF, each node periodically wakes up for duration called the ATIM Window. However, in the power saving mechanism specified in IEEE 802.11, all nodes use the same ATIM window size. Since the ATIM window size critically affects throughput and energy consumption, a fixed ATIM window does not perform well in all situations. This paper proposes an adaptive mechanism to dynamically choose an ATIM window size according to network condition. Simulation results show that the proposed scheme outperforms the IEEE 802.11 power saving mechanism in terms of the amount of power consumed and the packet delivery ratio.

LTE Base Station Power Saving Mechanism using Delay Information (Delay 정보를 이용한 LTE 기지국의 Power Saving 메커니즘)

  • Lee, Seung-Hwan;Rhee, Seung-Hyong;Choi, Yong-Hoon;Park, Su-Won
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • This thesis proposes a power saving MAC protocol for LTE base station which utilizes different graded DRX/DTX(Discontinuous. Reception/Transmission) that specified by 3GPP(Third Generation Partnership Project). Considering QoS in UE, proposed MAC protocol controls adaptive DRX/DTX cycle. When Packet delay of UE is less than normal time, LTE base station economize power by increasing DRX/DTX. When Packet delay of UE is more than normal time, delay of UE is decreased by guaranteed QoS. It depends on the traffic which is sent by UE. The proposed method is more improve power saving performance than another method which is unchanged DRX/DTX by conditions. Especially when set DRX/DTX up in conditions, it will meet the requirements of UE. In this thesis, I propose an power saving MAC protocol in an environment where LTE base station are communicated with UE and prove improvement in performance through simulations.