• Title/Summary/Keyword: Adaptive passive time reversal

Search Result 5, Processing Time 0.016 seconds

Algorithm and Experimental Verification of Underwater Acoustic Communication Based on Passive Time-Reversal Mirror (수동형 시역전에 기반한 수중음향통신 알고리즘 및 실험적 검증)

  • Eom, Min-Jeong;Kim, J.S.;Cho, Jung-Hong;Kim, Hoeyong;Sung, Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.392-399
    • /
    • 2014
  • The underwater acoustic communication is characterized by doubly spread channels, which are the delay spread due to multiple paths and the doppler spread due to environmental fluctuations or a moving platform. An equalizer is used to remove the inter-symbol interferences that the delay spread causes, but an equalizer doesn't use an acoustic environment such as a multipath. However, a passive time-reversal mirror is simpler than an equalizer because a matched filter is implemented numerically at the receiver structure along with one-way propagation. In this paper, a passive time-reversal mirror is applied to remove interferences due to a multipath in sea-going experimental data in East Sea in Oct. 2010 and improved communication performance is confirmed. The performance is verified by comparing the signal-to-interference plus noise ratio before/after passive time-reversal mirror. It is also performed independently of the passive time-reversal mirror and adaptive equalizer and the bit error rate is compared to verify the performance of underwater acoustic communication.

Gram-Schmidt process based adaptive time-reversal processing (그람슈미트 과정 기반의 적응형 시역전 처리)

  • Donghyeon Kim;Gihoon Byun;J. S. Kim;Kee-Cheol Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.184-199
    • /
    • 2024
  • Residual crosstalk has been considered as a major drawback of conventional time-reversal processing in the case of simultaneous multiple focusing. In this paper, the Gram-Schmidt process is applied to time-reversal processing to mitigate crosstalk in ocean waveguides for multiple probe sources. Experimental data-based numerical simulations confirm that nulls can be placed at multiple locations, and it is shown that different signals can be simultaneously focused at different probe source locations, ensuring distortionless responses in terms of active time-reversal processing. This focusing property is also shown to be much less affected by a reduction in the number of receivers than the adaptive time-reversal mirror method. The proposed method is shown to be effective in eliminating crosstalk in passive multi-input multi-output communications using sea-going data.

Long-range multiple-input-multiple-output underwater communication in deep water (심해에서의 장거리 다중입출력 수중통신)

  • Kim, Donghyeon;Kim, Daehwan;Kim, J.S.;Hahn, Joo Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.417-427
    • /
    • 2021
  • Long-range communication in deep waters must overcome the low data rate due to limited bandwidth. This paper presents the performance of Multiple-Input-Multiple-Output (MIMO) system to increase the data rate. In MIMO system, communication performance is degraded by crosstalk between users and an adaptive passive Time Reversal Processing (TRP) is widely used to eliminate this. In October 2018, long-range underwater acoustic communication experiment was conducted in deep water (1,000 m ~) off the east of Pohang, South Korea. During the experiment, a vertical line array was utilized and communication signals modulated by binary phase shift keying and quadrature phase shift keying with a symbol rate of 512 sps were transmitted. To generate MIMO communication signals, received signals from ranges of 26 km and 30 km is synthesized. Compared to the conventional passive TRP, the adaptive passive TRP eliminates the crosstalk between users and achieves error-free performance with an increase of output signal-to-noise ratio. Therefore, two users separated by 4 km in range achieves an aggregate data rate of 1,024 symbols/s.

Algorithm and experimental verification of underwater acoustic communication based on passive time reversal mirror in multiuser environment (다중송신채널 환경에서 수동형 시역전에 기반한 수중음향통신 알고리즘 및 실험적 검증)

  • Eom, Min-Jeong;Oh, Sehyun;Kim, J.S.;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2016
  • Underwater communication is difficult to increase the communication capacity because the carrier frequency is lower than that of radio communications on land. This is limited to the bandwidth of the signal under the influence of the characteristics of an ocean medium. As the high transmission speed and large transmission capacity have become necessary in the limited frequency range, the studies on MIMO (Multiple Input Multiple Output) communication have been actively carried out. The performance of the MIMO communication is lower than that of the SIMO (Single Input Multiple Output) communication because cross-talk occurs due to multiusers along with inter symbol interference resulting from the channel characteristics such as delay spread and doppler spread. Although the adaptive equalizer considering multi-channels is used to mitigate the influence of the cross-talk, the algorithm is normally complicated. In this paper, time reversal mirror technique with the characteristic of a self-equalization will be applied to simplify the compensation algorithm and relieve the cross-talk in order to improve the communication performance when the signal transmitted from two channels is received over interference on one channel in the same time. In addition, the performance of the MIMO communication based on the time reversal mirror is verified using data from the SAVEX15(Shallow-water Acoustic Variability Experiment 2015) conducted at the northern area of East China Sea in May 2015.

Performance analysis and verification of underwater acoustic communication simulator in medium long-range multiuser environment (중장거리 다중송신채널 환경에서 수중음향통신 시뮬레이터 성능 분석 및 검증)

  • Park, Heejin;Kim, Donghyeon;Kim, J.S.;Song, Hee-Chun;Hahn, Joo Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.451-456
    • /
    • 2018
  • UAComm (Underwater Acoustic Communication) is an active research area, and many experiment has been performed to develop UAComm system. In this paper, we investigate the possibility of modifying and applying VirTEX (Virtual Time series EXperiment) to medium long range MIMO (Multiple-Input Multiple-Output) UAComm of about 20 km range for the analysis and performance prediction of UAComm system. Since VirTEX is a time-domain simulator, the generated time series can be used in HILS (Hardware In the Loop Simulation) to develop UAComm system. The developed package is verified through comparing with the sea-going FAF05 (Focused Acoustic Field 2005) experimental data. The developed simulator can be used to predict the performance of UAComm system, and even replace the expensive sea-going experiment.