• Title/Summary/Keyword: Adaptive noise estimation

Search Result 228, Processing Time 0.026 seconds

Motion Estimation Algorithm Using Variance and Adaptive Search Range for Frame Rate Up-Conversion (프레임 율 향상을 위한 분산 및 적응적 탐색영역을 이용한 움직임 추정 알고리듬)

  • Yu, Songhyun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.138-145
    • /
    • 2018
  • In this paper, we propose a new motion estimation algorithm for frame rate up-conversion. The proposed algorithm uses the variance of errors in addition to SAD in motion estimation to find more accurate motion vectors. Then, it decides which motion vectors are wrong using the variance of neighbor motion vectors and the variance between current motion vector and neighbor's average motion vector. Next, incorrect motion vectors are corrected by weighted sum of eight neighbor motion vectors. Additionally, we propose adaptive search range algorithm, so we can find more accurate motion vectors and reduce computational complexity at the same time. As a result, proposed algorithm improves the average peak signal-to-noise ratio and structural similarity up to 1.44 dB and 0.129, respectively, compared with previous algorithms.

Lagged Cross-Correlation of Probability Density Functions and Application to Blind Equalization

  • Kim, Namyong;Kwon, Ki-Hyeon;You, Young-Hwan
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, the lagged cross-correlation of two probability density functions constructed by kernel density estimation is proposed, and by maximizing the proposed function, adaptive filtering algorithms for supervised and unsupervised training are also introduced. From the results of simulation for blind equalization applications in multipath channels with impulsive and slowly varying direct current (DC) bias noise, it is observed that Gaussian kernel of the proposed algorithm cuts out the large errors due to impulsive noise, and the output affected by the DC bias noise can be effectively controlled by the lag ${\tau}$ intrinsically embedded in the proposed function.

Adaptive Watermarking Using Successive Subband Quantization and Perceptual Model Based on Multiwavelet Transform Domain (멀티웨이브릿 변환 영역 기반의 연속 부대역 양자화 및 지각 모델을 이용한 적응 워터마킹)

  • 권기룡;이준재
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1149-1158
    • /
    • 2003
  • Content adaptive watermark embedding algorithm using a stochastic image model in the multiwavelet transform is proposed in this paper. A watermark is embedded into the perceptually significant coefficients (PSCs) of each subband using multiwavelet transform. The PSCs in high frequency subband are selected by SSQ, that is, by setting the thresholds as the one half of the largest coefficient in each subband. The perceptual model is applied with a stochastic approach based on noise visibility function (NVF) that has local image properties for watermark embedding. This model uses stationary Generalized Gaussian model characteristic because watermark has noise properties. The watermark estimation use shape parameter and variance of subband region. it is derive content adaptive criteria according to edge and texture, and flat region. The experiment results of the proposed watermark embedding method based on multiwavelet transform techniques were found to be excellent invisibility and robustness.

  • PDF

Channel Prediction based Adaptive Channel Tracking cheme in MIMO-OFDM Systems with Null Sub-carriers (Null 부반송파를 갖는 MIMO-OFDM에서 채널 예측 기반적응 채널 추적 방식)

  • Jeon, Hyoung-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.556-564
    • /
    • 2007
  • This paper proposes an efficient scheme to track a time variant channel induced by multi-path Rayleigh fading in mobile MIMO-OFDM systems with null sub-carriers. The proposed adaptive channel tracking scheme removes in the frequency domain the interfering signals of the other transmit (Tx) antennas by using a predicted channel frequency response before starting the channel estimation. Time domain channel estimation is then performed to reduce the additive white Gaussian noise (AWGN). The simulation results show that the proposed method is better than the conventional channel tracking method [3] in time varying channel environments. At a Doppler frequency of 300 Hz and bit error rates (BER) of 10-3, signal-to-noise power ratio (Eb/N0) gains of about 2.5 dB are achieved relative to the conventional channel tracking method [3]. At a Doppler frequency of 600 Hz, the performance difference between the proposed method and conventional one becomes much larger.

Image warping using an adaptive partial matching method (적응적 부분 정합 방법을 이용한 영상 비틀림 방법)

  • 임동근;호요성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2783-2797
    • /
    • 1997
  • This paper proposes a new motion estimation algorithm that employs matching in a variable search area. Instead of uisg a fixed search range for coarse motion estimation, we examine a varying search range, which is determined adaptively by the peak signal to noise ratio (PSNR) of the frame difference. The hexagonal matching method is one of the refined methods in image warping. It produces improved image quality, but it requires a large amount of computataions. The proposed adaptive partial matching method reduces computational complexity below about 50% of the hexagonal matching method, while maintaining the image quality comparable. The performance of two motion compensation methods, which combine the affine or bilinear transformation with the proposed motion estimation algorithm, is evaluated based on the following criteria:computtational complexity, number of coding bits, and reconstructed image quality. The quality of reconstructed images by the proposed method is substantially improved relative to the conventional BMA method, and is comparable to the full hexagonal matching method;in addition, computational complexity and the number of coding bits are reduced significantly.

  • PDF

An A2CL Algorithm based on Information Optimization Strategy for MMRS

  • Dong, Qianhui;Li, Yibing;Sun, Qian;Tian, Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1603-1623
    • /
    • 2020
  • Multiple Mobile Robots System (MMRS) has shown many attractive features in lots of real-world applications that motivate their rapid and wide diffusion. In MMRS, the Cooperative Localization (CL) is the basis and premise of its high-performance task. However, the statistical characteristics of the system noise should be already known in traditional CL algorithms, which is difficult to satisfy in actual MMRS because of the numerous of disturbances form the complex external environment. So the CL accuracy will be reduced. To solve this problem, an improved Adaptive Active Cooperative Localization (A2CL) algorithm based on information optimization strategy for MMRS is proposed in this manuscript. In this manuscript, an adaptive information fusion algorithm based on the variance component estimation under Extended Kalman filter (VCEKF) method for MMRS is introduced firstly to enhance the robustness and accuracy of information fusion by estimating the covariance matrix of the system noise or observation noise in real time. Besides, to decrease the effect of observation uncertainty on CL accuracy further, an observation optimization strategy based on information theory, the Model Predictive Control (MPC) strategy, is used here to maximize the information amount from observations. And semi-physical simulation experiments were carried out to verity the A2CL algorithm's performance finally. Results proved that the presented A2CL algorithm based on information optimization strategy for MMRS cannot only enhance the CL accuracy effectively but also have good robustness.

A Study on The Adaptive Robust Servocontroller (견실한 서보적응제어기에 관한 연구)

  • 김종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.513-525
    • /
    • 1990
  • This paper presents Adaptive Robust Servocontrol(ARSC) scheme, which is an explicit(or indirect) pole-assignment adaptive algorithm with the property of "robustness". It guarantees asymptotic regulation and tracking in the presence of finite parameter perturbations of the unknown plant(or process) model. The controller structure is obtained by transforming a robust control theory into an adaptive control version. This controller structure is combined with the model estimation algorithm which includes a dead-zone for bounded noise. It is proved theoretically that this combination of control and identification is globally convergent and stable. It is also shown, through a real-time simulation study, that the desired closed-loop poles of the augmented system can be assigned directly, and that the adjustment mechanism of the scheme tunes the controller parameters according to the assigned closed-loop poles.oop poles.

Performance Enhancement of Attitude Estimation using Adaptive Fuzzy-Kalman Filter (적응형 퍼지-칼만 필터를 이용한 자세추정 성능향상)

  • Kim, Su-Dae;Baek, Gyeong-Dong;Kim, Tae-Rim;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2511-2520
    • /
    • 2011
  • This paper describes the parameter adjustment method of fuzzy membership function to improve the performance of multi-sensor fusion system using adaptive fuzzy-Kalman filter and cross-validation. The adaptive fuzzy-Kanlman filter has two input parameters, variation of accelerometer measurements and residual error of Kalman filter. The filter estimates system noise R and measurement noise Q, then changes the Kalman gain. To evaluate proposed adaptive fuzzy-Kalman filter, we make the two-axis AHRS(Attitude Heading Reference System) using fusion of an accelerometer and a gyro sensor. Then we verified its performance by comparing to NAV420CA-100 to be used in various fields of airborne, marine and land applications.

Disparity Estimation for Intermediate View Reconstruction of Multi-view Video (다시점 동영상의 중간시점영상 생성을 위한 변이 예측 기법)

  • Choi, Mi-Nam;Yun, Jung-Hwan;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.915-929
    • /
    • 2008
  • In this paper, we propose an algorithm for pixel-based disparity estimation with reliability in the multi-view image. The proposed method estimates an initial disparity map using edge information of an image, and the initial disparity map is used for reducing the search range to estimate the disparity efficiently. Furthermore, disparity-mismatch on object boundaries and textureless-regions get reduced by adaptive block size. We generated intermediate-view images to evaluate the estimated disparity. Test results show that the proposed algorithm obtained $0.1{\sim}1.2dB$ enhanced PSNR(peak signal to noise ratio) compared to conventional block-based and pixel-based disparity estimation methods.

The Improved BAMS Filter for Image Denoising (영상 잡음제거를 위한 개선된 BAMS 필터)

  • Woo, Chang-Yong;Park, Nam-Chun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.270-277
    • /
    • 2010
  • The BAMS filter is a kind of wavelet shrinkage filter based on the Bayes estimators with no simulation, therefore it can be used for a real time filter. The denoising efficiency of BAMS filter is seriously affected by the estimated noise variance in each wavelet band. To remove noise in signals in existing BAMS filter, the noise variance is estimated by using the quartile of the finest level of details in the wavelet decomposition, and with this variance, the noise of the level is removed. In this paper, to remove the image noise includingodified quartile of the level of detail is proposed. And by these techniques, the image noises of mid and high frequency bands are removed, and the results showed that the increased PSNR of ab the midband noise, the noise variance estimation method using the monotonic transform and the mout 2[dB] and the effectiveness in denosing of low noise deviation images.