• Title/Summary/Keyword: Adaptive noise control

Search Result 407, Processing Time 0.021 seconds

Design of a Speed Controller for the Separately Excited DC Motor in Application on Pure Electric Vehicles (순전기자동차용 타여자직류기의 속도제어기 설계)

  • Hyun, Keun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.6-12
    • /
    • 2007
  • In this paper, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor in pure electric vehicles. A general electric drive train of PEV is conceptually rearrange to major subsystems as electric propulsion, energy source, and auxiliary subsystem and the load torque is modeled by considering the aerodynamic, rolling resistance and grading resistance. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation results are provided to demonstrate the effectiveness of the proposed controller.

Initial Investigation on Consolidation with Adaptive Dynamic Threshold for ABR Multicast Connections in ATM Networks (비동기 전송모드 망의 점대다중점연결을 위한 적응동적임계치기반 병합알고리즘)

  • Shin, Soung-Wook;Cho, Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.962-966
    • /
    • 2001
  • The major problem at a branch point for point-to-multipoint available bit rate(ABR) services in asynchronous transfer mode (ATM) networks is how to consolidate backward resource management(BRM) cells from each branch for a multicast connection. In this paper, we propose an efficient feedback consolidation algorithm based on an adaptive dynamic threshold(ADT) to eliminate the consolidation noise and the reduce the consolidation delay. The main idea of the ADT algorithm lies in that each branch point estimates the ABR traffic condition of the network through the virtual queue estimation and the transmission threshold of the queue level in branch points is adaptively controlled according to the estimation. Simulation results show that the proposed ADT algorithm can achieve a faster response in congestion status and a higher link utilization compared with the previous works.

  • PDF

Hearing aid application of feedback cancellation algorithm in frequency domain (주파수 대역에서의 피드백 제거 알고리즘의 보청기 응용)

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.272-279
    • /
    • 2016
  • In this paper, the realization of a hearing aid adaptively cancelling feedback noise was considered. Conventional least mean square method in time domain was transformed into frequency domain in order to minimize computational burden. The adaptive filter algorithm was evaluated by Matlab (Matrix laboratory), and it was confirmed by CSR 8675 Bluetooth DSP IC (Digital Signal Processor Integrated Circuit) chip firmware realization. Some remote control features by a smart phone was added to the smart hearing aid for user interface easiness.

Design of a Hybrid Active Noise Controller for Duct Noise (덕트 소음 제거를 위한 하이l브리드형 능동 소음제어기의 설계.)

  • Hong, Suk-Ki;Ahn, Dong-Jun;Nam, Hyun-Do
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1307-1309
    • /
    • 1996
  • This paper presents hybrid active noise control (HANC) systems which is based on the combination of feedforward and feedback ANC controllers. HANC systems use FIR filters and is based on primary noise regeneration principle and filtered-X LMS algorithms. HANC systems show better attenuation characteristics and residual spectrum. The order of adaptive filters used in HANC systems is lower than that of conventional feedforward and feedback ANC systems. A proposed HANC algorithm was implemented using a Taxas Instruments TMS320C31 digital signal processor for experimental verification.

  • PDF

An attenuation effect of noise according to the direction of secondary sound source in duct ANC system (Duct ANC 시스템에서 2차음원 방향별 소음감소효과)

  • Lee, Hyung-Seok;Lee, Eung-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.497-502
    • /
    • 2008
  • In this paper, we studied on an attenuation effect of automobile exhaust noise according to the direction of secondary sound source in duct ANC system. Automobile exhaust noise was recorded at 800rpm. 3500rpm and 5000rpm of a diesel engine. Directions of loudspeaker(second sound source) can be exchanged to $30^{\circ}$, $90^{\circ}$ and $150^{\circ}$ against the primary noise flow by acrylic ducts to be made for experimentation. DSP board with TMS320C6416 chip of Texas Instrument Co used to control adaptive ANC system. This ANC system is based on the single-channel FxLMS algorithm. In experiment result, when the loud speaker direction was $150^{\circ}$, the attenuation effect showed largely. In case of $90^{\circ}$ duct, the noise was a little increased. In case of $30^{\circ}$ duct, the noise was a little increased or decreased according to the frequency range and the sound pressure(dB) of exhaust noise to comply with engine rpm.

  • PDF

Adaptive Cooperative Spectrum Sensing Based on SNR Estimation in Cognitive Radio Networks

  • Ni, Shuiping;Chang, Huigang;Xu, Yuping
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.604-615
    • /
    • 2019
  • Single-user spectrum sensing is susceptible to multipath effects, shadow effects, hidden terminals and other unfavorable factors, leading to misjudgment of perceived results. In order to increase the detection accuracy and reduce spectrum sensing cost, we propose an adaptive cooperative sensing strategy based on an estimated signal-to-noise ratio (SNR). Which can adaptive select different sensing strategy during the local sensing phase. When the estimated SNR is higher than the selection threshold, adaptive double threshold energy detector (ED) is implemented, otherwise cyclostationary feature detector is performed. Due to the fact that only a better sensing strategy is implemented in a period, the detection accuracy is improved under the condition of low SNR with low complexity. The local sensing node transmits the perceived results through the control channel to the fusion center (FC), and uses voting rule to make the hard decision. Thus the transmission bandwidth is effectively saved. Simulation results show that the proposed scheme can effectively improve the system detection probability, shorten the average sensing time, and has better robustness without largely increasing the costs of sensing system.

Multi-channel normalized FxLMS algorithm for active noise control (능동 소음 제어를 위한 정규화된 다채널 FxLMS 알고리즘)

  • Chung, Ik Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.280-287
    • /
    • 2016
  • In this paper, we propose a normalization algorithm that can be applied to adaptive filters for multi-channel active noise control. The FxLMS (Filtered-x Least Mean Square) algorithm for the single-channel active noise control can be normalized in the same way as the NLMS (Normalized Least Mean Square) algorithm, whereas in case of the multi-channel active noise control, the single-channel normalization for the FxLMS algorithm cannot be extended to the normalization for the multi-channel FxLMS algorithm straightforwardly. First, we adopt a generalized normalization algorithm for the multi-channel FxLMS algorithm based on the principle of minimal disturbance and then, proposed a normalized algorithm considering only diagonal elements to avoid computation for matrix inversion. We carried out performance comparisons of the proposed algorithm with other algorithms without normalization. It is shown that the proposed algorithm presents better convergence characteristics under non-stationary environments.

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

Optimal Design of Air-spring and Active Control of Vibration Isolation Table (공기스프링의 최적설계 및 방진 테이블의 능동 제어)

  • An, Chae-Hun;Kim, Ho-Sung;Yim, Kwang-Hyeok;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.909-914
    • /
    • 2006
  • Vibration isolation tables are mostly required in precise measurement and manufacturing system. Among the vibration isolation tables, an air spring is the most favorable equipment because of low resonant frequency and high damping ratio. However, it is difficult to design the air spring with the required stiffness and damping ratio. Futhermore, whenever conventional active control methods are applied to the air spring, it may be difficult to obtain effective control performance due to high nonlinearity of air spring. In this paper, the optimal design of the air spring is performed using genetic algorithm to bring out low resonant frequency and high damping ratio. Also, active control of the vibration isolation table with 3-DOF model is proposed using the adaptive control method. Through experiments, optimal design is shown to be effective. And performance of the proposed control method is verified to be better than those of the passive control method and the conventional active control methods.

  • PDF

Active Control of Flow-Induced Vibration Using Piezoelectric Actuators (압전 작동기를 이용한 유체 유기 진동의 능동 제어)

  • 한재홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.446-451
    • /
    • 2003
  • This paper presents some examples of active control of flow-induced vibration using piezoelectric actuators. The flutter phenomenon, which is the dynamic instability of structure due to mutual interaction among inertia, stiffness, and aerodynamic forces, may cause catastrophic structural failure, and therefore the active flutter suppression is one of the main objectives of the aeroelastic control. Active flutter control has been numerically and experimentally studied for swept-back lifting surfaces using piezoelectric actuation. A finite element method, a panel aerodynamic method, and the minimum state space realization are involved in the development of the governing equation, which is efficiently used for the analysis of the system and design of control laws with modern control framework. The active control suppressed flow-induced vibrations and extended the flutter speed around by 10%. Another representative flow-induced vibration phenomenon is the oscillation of blunt bodies due to the vortex shedding. In general, it is quite difficult to set up the numerical model because of the strong non-linearity of the vortex shedding structure. Therefore, we applied adaptive positive position feedback controller, which requires no pre-determined model of the plant, and successfully suppressed the flow-induced vibration.

  • PDF