• Title/Summary/Keyword: Adaptive learning

Search Result 1,003, Processing Time 0.037 seconds

Optimizing Energy Efficiency in Mobile Ad Hoc Networks: An Intelligent Multi-Objective Routing Approach

  • Sun Beibei
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2024
  • Mobile ad hoc networks represent self-configuring networks of mobile devices that communicate without relying on a fixed infrastructure. However, traditional routing protocols in such networks encounter challenges in selecting efficient and reliable routes due to dynamic nature of these networks caused by unpredictable mobility of nodes. This often results in a failure to meet the low-delay and low-energy consumption requirements crucial for such networks. In order to overcome such challenges, our paper introduces a novel multi-objective and adaptive routing scheme based on the Q-learning reinforcement learning algorithm. The proposed routing scheme dynamically adjusts itself based on measured network states, such as traffic congestion and mobility. The proposed approach utilizes Q-learning to select routes in a decentralized manner, considering factors like energy consumption, load balancing, and the selection of stable links. We present a formulation of the multi-objective optimization problem and discuss adaptive adjustments of the Q-learning parameters to handle the dynamic nature of the network. To speed up the learning process, our scheme incorporates informative shaped rewards, providing additional guidance to the learning agents for better solutions. Implemented on the widely-used AODV routing protocol, our proposed approaches demonstrate better performance in terms of energy efficiency and improved message delivery delay, even in highly dynamic network environments, when compared to the traditional AODV. These findings show the potential of leveraging reinforcement learning for efficient routing in ad hoc networks, making the way for future advancements in the field of mobile ad hoc networking.

A Design and Implementation of Web-based Test System using Computer-adaptive Test Algorithm (컴퓨터 적응형 알고리즘을 이용한 웹기반 시험 시스템 설계 및 구축)

  • Cho, Sung Ho
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.6
    • /
    • pp.69-76
    • /
    • 2004
  • E-learning is the application of e-business technology and services to teaching and learning. It use of new multimedia technologies and Internet to improved the quality of learning by facilitating access to remote resources and services. In this paper, we show a web-based test system, which is carefully designed and implemented based on the real TOEFL CBT. The system consists of a contents delivery mechanism, computer-adaptive test algorithm, and review engine. In this papepr, we describe design and implementing issues of web-based test systems.

  • PDF

An Adaptive Learning Rate with Limited Error Signals for Training of Multilayer Perceptrons

  • Oh, Sang-Hoon;Lee, Soo-Young
    • ETRI Journal
    • /
    • v.22 no.3
    • /
    • pp.10-18
    • /
    • 2000
  • Although an n-th order cross-entropy (nCE) error function resolves the incorrect saturation problem of conventional error backpropagation (EBP) algorithm, performance of multilayer perceptrons (MLPs) trained using the nCE function depends heavily on the order of nCE. In this paper, we propose an adaptive learning rate to markedly reduce the sensitivity of MLP performance to the order of nCE. Additionally, we propose to limit error signal values at out-put nodes for stable learning with the adaptive learning rate. Through simulations of handwritten digit recognition and isolated-word recognition tasks, it was verified that the proposed method successfully reduced the performance dependency of MLPs on the nCE order while maintaining advantages of the nCE function.

  • PDF

Dynamic control of mobile robots using a robust.adaptive learning control method (강인.적응학습제어 방식에 의한 이동로봇의 동력학 제어)

  • Nam, Jae-Ho;Baek, Seung-Min;Guk, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.178-186
    • /
    • 1998
  • In this paper, a robust.adaptive learning control scheme is presented for precise trajectory tracking of rigid mobile robots. In the proposed controller, a set of desired trajectories is defined and used in constructing the control input and learning rules which constitute the main part of the proposed controller. Stable operating characteristics such as precise trajectory tracking, parameter estimation, disturbance suppression, etc., are shown thorugh experiments and computer simulations.

  • PDF

ZPerformance Improvement of ART2 by Two-Stage Learning on Circularly Ordered Learning Sequence (순환 배열된 학습 데이터의 이 단계 학습에 의한 ART2 의 성능 향상)

  • 박영태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.102-108
    • /
    • 1996
  • Adaptive resonance theory (ART2) characterized by its built-in mechanism of handling the stability-plasticity switching and by the adaptive learning without forgetting informations learned in the past, is based on an unsupervised template matching. We propose an improved tow-stage learning algorithm for aRT2: the original unsupervised learning followed by a new supervised learning. Each of the output nodes, after the unsupervised learning, is labeled according to the category informations to reinforce the template pattern associated with the target output node belonging to the same category some dominant classes from exhausting a finite number of template patterns in ART2 inefficiently. Experimental results on a set of 2545 FLIR images show that the ART2 trained by the two-stage learning algorithm yields better accuracy than the original ART2, regardless of th esize of the network and the methods of evaluating the accuracy. This improvement shows the effectiveness of the two-stage learning process.

  • PDF

Adaptive Control of Robot Manipulator using Neuvo-Fuzzy Controller

  • Park, Se-Jun;Yang, Seung-Hyuk;Yang, Tae-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.4-161
    • /
    • 2001
  • This paper presents adaptive control of robot manipulator using neuro-fuzzy controller Fuzzy logic is control incorrect system without correct mathematical modeling. And, neural network has learning ability, error interpolation ability of information distributed data processing, robustness for distortion and adaptive ability. To reduce the number of fuzzy rules of the FLS(fuzzy logic system), we consider the properties of robot dynamic. In fuzzy logic, speciality and optimization of rule-base creation using learning ability of neural network. This paper presents control of robot manipulator using neuro-fuzzy controller. In proposed controller, fuzzy input is trajectory following error and trajectory following error differential ...

  • PDF

Study on Course-Embedded Learning Achievement Evaluation and Adaptive Feedback (교과기반 학습성취 평가 및 적응형 피드백 시스템 설계)

  • Chung, Hyun-Sook;Kim, Jung-Min
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.553-560
    • /
    • 2022
  • The research of course-embedded learning evaluation method, which can be used to measure the competency of learners by evaluation of learning outcomes, has been performed for competency-based education in the university. In this paper, we propose an learning evaluation and adaptive feedback model based on learning outcomes, learning subjects, learning concepts graph, and an evaluation matrix. Firstly, we define the layered learning outcomes, a graph of learning subjects and concepts, and two association matric. Secondly, we define algorithms to calculate the level of learning achievement and the learning feedback to learners. We applied the proposed method to a specific course, "Java Programing", to validate the effectiveness of our method. The experimental results show that our proposed method can be useful to measure the learning achievement of learners and provide adaptive feedbacks to them.

Multi-Channel Speech Enhancement Algorithm Using DOA-based Learning Rate Control (DOA 기반 학습률 조절을 이용한 다채널 음성개선 알고리즘)

  • Kim, Su-Hwan;Lee, Young-Jae;Kim, Young-Il;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.3 no.3
    • /
    • pp.91-98
    • /
    • 2011
  • In this paper, a multi-channel speech enhancement method using the linearly constrained minimum variance (LCMV) algorithm and a variable learning rate control is proposed. To control the learning rate for adaptive filters of the LCMV algorithm, the direction of arrival (DOA) is measured for each short-time input signal and the likelihood function of the target speech presence is estimated to control the filter learning rate. Using the likelihood measure, the learning rate is increased during the pure noise interval and decreased during the target speech interval. To optimize the parameter of the mapping function between the likelihood value and the corresponding learning rate, an exhaustive search is performed using the Bark's scale distortion (BSD) as the performance index. Experimental results show that the proposed algorithm outperforms the conventional LCMV with fixed learning rate in the BSD by around 1.5 dB.

  • PDF

Maximum Torque Control of Induction Motor using Adaptive Learning Neuro Fuzzy Controller (적응학습 뉴로 퍼지제어기를 이용한 유도전동기의 최대 토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jin;Kang, Sung-Joon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.778_779
    • /
    • 2009
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. The paper is proposed maximum torque control of induction motor drive using adaptive learning neuro fuzzy controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d, q axis current $_i_{ds}$, $i_{qs}$ for maximum torque operation is derived. The proposed control algorithm is applied to induction motor drive system controlled adaptive learning neuro fuzzy controller and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the adaptive learning neuro fuzzy controller and ANN controller.

  • PDF

An Adaptive Learning Method of Fuzzy Hypercubes using a Neural Network (신경망을 이용한 퍼지 하이퍼큐브의 적응 학습방법)

  • Jae-Kal, Uk;Choi, Byung-Keol;Min, Suk-Ki;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.49-60
    • /
    • 1996
  • The objective of this paper is to develop an adaptive learning method for fuzzy hypercubes using a neural network. An intelligent control system is proposed by exploiting only the merits of a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to upda1.e the fuzzy control ru1c:s on-line with the output errors. As a result, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF