A new control method for precision robust position control of a permanent magnet synchronous motor (PMSM) is presented. In direct drive motor systems, a load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in using a fixed gain to solve this problem. However, the motor flux linkage cannot be determined precisely for a load torque observer. Therefore, an asymptotically stable adaptive observer base on a deadbeat observer is considered to overcome the problems of unknown parameters, torque disturbance and a small chattering effect. To find the critical parameters the system stability analysis is carried out using the Liapunov stability theorem.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.50
no.9
/
pp.423-429
/
2001
This paper proposes adaptive impedance control algorithm using fuzzy inference when robot contacts with its environments. The characteristics of the adaptive impedance controller is to adapt with parametric uncertainty and nonlinear conditions. The control algorithm is to join impedance controller with fuzzy inference engine. The proposed control method overcomes the problem of impedance controller using gain-tuning algorithm of fuzzy inference engine. We implemented an experimental set-up consisting of environment-generated one-link robot system and DSP system for controller development. We apply the adaptive fuzzy impedance controller to one-link root system, and it shows the good performance on regulating the interactive force in case of contacting with arbitrary environment.
An iterative learning control scheme for tracking control of a class of uncertain nonlinear systems is presented. By introducing a model reference adaptive controller in the learning control structure, it is possible to achieve zero tracking of unknown system even when the upperbound of uncertainty in system dynamics is not known apriori. The adaptive controller pull the state of the system to the state of reference model via control gain adaptation at each iteration, while the learning controller attracts the model state to the desired one by synthesizing a suitable control input along with iteration numbers. In the controller role transition from the adaptive to the learning controller takes place in gradually as learning proceeds. Another feature of this control scheme is that robustness to bounded input disturbances is guaranteed by the linear controller in the feedback loop of the learning control scheme. In addition, since the proposed controller does not require any knowledge of the dynamic parameters of the system, it is flexible under uncertain environments. With these facts, computational easiness makes the learning scheme more feasible. Computer simulation results for the dynamic control of a two-axis robot manipulator shows a good performance of the scheme in relatively high speed operation of trajectory tracking.
In this paper the fuzzy-genetic controller for path-tracking of WMRs is proposed. Fuzzy controller is implemented to adaptive adjust the crossover rate and mutation rate, and genetic algorithm is implemented to adaptive adjust the control gain during the optimization. The computer simulation shows that the proposed fuzzy-genetic controller is effective.
This note considers the class of controllers with integral action which arise directly from appropriate system models. Via internal model principle approach, a corresponding class of self-tuning controller is shown to have both integral action in controller and offset removal in the tuning algorithm. The key idea is to constrain the estimator in each step in order to ensure that dc gain of feedforward and feedback polynomial of adaptive controller are always equal, thus allowing the loop integrator to work properly.
The Transactions of the Korean Institute of Electrical Engineers
/
v.37
no.4
/
pp.220-225
/
1988
A class of adaptive controllers with integral action is proposed, which may riject the offset due to any load disturbance on the plant. Effective integral action and robust identification against the offset can be achieved via the zero-gain predictor. The system is improved, in this paper, to be of more generalized structure, and the detuning control weight which can cope with nonminimum-phase systems is tuned on-line. Discrete-time versions of the improved system are developed, which may be more flexible for the choice of the design parameters. The resulting control systems may also be shown to be robust to the unmodelled dynamics.
An adaptive ${\alpha}-{\beta}$ tracker is proposed for tracking maneuvering targets with a track-while-scan radar system. The tracker gain is updated on-line corresponding to the adjusted process noise variance which is obtained via time averaging of the process over a sliding window. The adjusted process noise variance is used to compute the maneuverability index for the tracker gain based on the steady-state Kalman filter equation for each epoch. It is shown via simulation that the proposed approach provides robust and accurate position estimates during the target maneuver while the performance of the conventional ${\alpha}-{\beta}$ tracker is shown much degraded.
This paper presents hybrid control of an active suspension system with a full-car model by using H$\sub$$\infty$/ and nonlinear adaptive control methods. The full-car model has seven degrees of freedom including heaving, pitching and rolling motions. In the active suspension system, the controller shows good performance: small gains from the road disturbances to the heaving, pitching and rolling accelerations of the car body. Also the controlled system must be robust to system parameter variations. As the control method, H$\sub$$\infty$/ controller is designed so as to guarantee the robustness of a closed-loop system in the presence of uncertainties and disturbances. The system parameter variations are taken into account by multiplicative uncertainty model and the system robustness is guaranteed by small gain theorem. The active system with H$\sub$$\infty$/ controller can reduce the accelerations of the car body in the heaving, pitching and rolling directions. The nonlinearity of a hydraulic actuator is handled by nonlinear adaptive control based on the back-stepping method. The effectiveness of the controllers is verified through simulation results in both frequency and time domains.
International Journal of Control, Automation, and Systems
/
v.2
no.3
/
pp.374-383
/
2004
This paper presents a neural network adaptive controller for autonomous diving control of an autonomous underwater vehicle (AUV) using adaptive backstepping method. In general, the dynamics of underwater robotics vehicles (URVs) are highly nonlinear and the hydrodynamic coefficients of vehicles are difficult to be accurately determined a priori because of variations of these coefficients with different operating conditions. In this paper, the smooth unknown dynamics of a vehicle is approximated by a neural network, and the remaining unstructured uncertainties, such as disturbances and unmodeled dynamics, are assumed to be unbounded, although they still satisfy certain growth conditions characterized by 'bounding functions' composed of known functions multiplied by unknown constants. Under certain relaxed assumptions pertaining to the control gain functions, the proposed control scheme can guarantee that all the signals in the closed-loop system satisfy to be uniformly ultimately bounded (UUB). Simulation studies are included to illustrate the effectiveness of the proposed control scheme, and some practical features of the control laws are also discussed.
T his paper presents the lateral and longitudinal control algorithm for the driving of a 4WS AGV(Automated Guided Vehicle). The control law to the lateral and longitudinal control of the AGV includes adaptive agin tuning ability, that is the controller gain of the gravity compensated PD controller can be changed on a real-time. The gain tuning law is derived from the Lyapunov direct method using the output error of the reference model and the actual model, And to show the performance of the presented lateral and longitudinal control algorithm, we simulate toe nonlinear AGV equations of the motion by deriving the Newton-Euler Method, The read path is from quay yard area to docking position in loading yard area. The quay yard area is where the quay crane loads the container to the AGV and the docking position is where the container is transferred to the gantry crane. The road types are constructed in a straight line and J-turn. When driving the straight line, the driving velocity is 6㎧ and the J-turn is 3㎧.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.