• Title/Summary/Keyword: Adaptive frequency tracking filter

Search Result 23, Processing Time 0.016 seconds

Filtered-based GPS structural vibration monitoring methods and comparison of their performances

  • Zhong, P.;Ding, X.L.;Zheng, D.W.;Chen, W.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.137-141
    • /
    • 2006
  • The purpose of GPS structural vibration monitoring is to obtain information on the frequency and amplitude of vibrations based on GPS observations that are often affected by various errors. Filters are frequently used to improve GPS accuracy and to retrieve vibration signals from GPS observational series. This paper studies the performances of four commonly used filters, i.e., Vondrak, wavelet, adaptive FIR and Kalman filters, for such applications. Controlled experiments are carried out and the results show that the capability of GPS in tracking structural dynamics and complex signals can be improved with any of the filters. The performances of Vondrak and wavelet filters are almost the same and superior to the adaptive FIR and Kalman filters. Recommendations are given for the selection of filters and filter parameters for different situations based on an analysis of the advantages and disadvantages of each of the filters.

  • PDF

A study imitating human auditory system for tracking the position of sound source (인간의 청각 시스템을 응용한 음원위치 추정에 관한 연구)

  • Bae, Jeen-Man;Cho, Sun-Ho;Park, Chong-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.878-881
    • /
    • 2003
  • To acquire an appointed speaker's clear voice signal from inspect-camera, picture-conference or hands free microphone eliminating interference noises needs to be preceded speaker's position automatically. Presumption of sound source position's basic algorithm is about measuring TDOA(Time Difference Of Arrival) from reaching same signals between two microphones. This main project uses ADF(Adaptive Delay Filter) [4] and CPS(Cross Power Spectrum) [5] which are one of the most important analysis of TDOA. From these analysis this project proposes presumption of real time sound source position and improved model NI-ADF which makes possible to presume both directions of sound source position. NI-ADF noticed that if auditory sense of humankind reaches above to some specified level in specified frequency, it will accept sound through activated nerve. NI-ADF also proposes practicable algorithm, the presumption of real time sound source position including both directions, that when microphone loads to some specified system, it will use sounds level difference from external system related to sounds of diffraction phenomenon. In accordance with the project, when existing both direction adaptation filter's algorithm measures sound source, it increases more than twice number by measuring one way. Preserving this weak point, this project proposes improved algorithm to presume real time in both directions.

  • PDF

A Narrowband Interference Excision Algorithm in the Frequency Domain for GNSS Receivers

  • Shin, Mi-Young;Park, Chan-Sik;Lee, Ho-Keun;Lee, Dae-Yearl;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.359-364
    • /
    • 2006
  • Interference can seriously degrade the performance of GPS receiver because GPS signal has extremely low power at earth surface. This paper presents a Narrowband Interference Excision Filter (NIEF) in frequency domain that removes narrowband interferences with small signal loss. A NIEF transforms the received GPS signals with interferences into the frequency domain with FFT and then compute statistics such as mean and standard deviation to determine an excision threshold. All spectrums exceeding the threshold are removed and the remaining spectrums are restored by IFFT. A NIEF effectively can remove various and strong interferences with a simple structure. However, the signal power loss is unavoidable during FFT and IFFT. Besides the hamming window and overlap technique, a threshold-whitening technique and an adaptive detection threshold are adopted to effectively reduce the signal power loss. The performance of implemented NIEF is evaluated using real signals obtained by 12 bit GPS signal acquisition board. The output of NIEF is fed into the Software Defined Receiver to evaluate the acquisition and tracking performance. Experimental results shows that many types of interference such as single-tone CWI, AM, FM, swept CWI and multi-tones CWI are effectively mitigated with small signal power loss.

  • PDF