• Title/Summary/Keyword: Adaptive flux observer

Search Result 82, Processing Time 0.029 seconds

Efficiency Optimization with Sliding Mode Observer for Induction Motor (슬라이딩 모드 관측기를 이용한 유도전동기의 효율 최적화)

  • Lee, Sun-Young;Park, Ki-Kwang;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.74-76
    • /
    • 2009
  • In this paper, search method and sliding mode observer are developed for efficiency optimization of induction motor. The proposed control scheme consists of efficiency controller and adaptive backstepping controller. A search controller for which information of input of fuzzy controller is included in efficiency controller that uses a direct vector controlled induction motor. The search controller is based on the "Rosenbrock" method and finds the flux level at the minimum input power of induction motor. Once this optimal flux level has been determined, this information is utilized to update the rule base of a fuzzy controller A sliding mode observer is designed to estimate rotor flux and an adaptive backstepping controller is also used to compensate for mechanical uncertainties in the speed control of induction motor. Simulation results are presented to validate the proposed controller.

  • PDF

Design of an Adaptive Speed Controller for Induction Motors Using Nonlinear Disturbance Observer (비선형 외란 관측기를 이용한 유도전동기의 적응 속도제어기 설계)

  • Hwang, Young-Ho;Lee, Sun-Young;Chung, Kee-Chull;Han, Byoung-Jo;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1509-1510
    • /
    • 2008
  • In this paper, we propose a robust adaptive controller for induction motors with uncertainties using nonlinear disturbance observer(NDO). The proposed NDO is applied to estimate the time varying lumped uncertainty which are derived from unknown motor parameters and load torque, but NDO error does not converge to zero since the derivate of lumped uncertainty is not zero. Then the high order neural networks(HONN) is presented to estimate the NDO error such that the rotor speed to converge to a small neighborhood of the desired trajectory. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer. Simulation results are provided to verify the effectiveness of the proposed approach.

  • PDF

A Stable Sensorless Speed Control for Induction Motor in the Overall Range (전영역에서 안정된 유도전동기의 센서리스 속도제어)

  • 김종수;김성환;오세진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.641-647
    • /
    • 2004
  • By most sensorless speed control schemes for induction motor. the control performances in high speed range are good, but it is difficult to obtain satisfactory results in low speed region. This paper proposes a new method controlling the low and the high speed regions separately to attain the stable operation in the overall range. The current error compensation method, in which the controlled stator voltage is applied to the induction motor so that the error between stator currents of the numerical model and the actual motor can be forced to decay to zero as time proceeds. is used in the low speed region In the high speed region. the method with adaptive observer is utilized. This control strategy contains an adaptive state observer for flux estimation. The rotor speed can be calculated from the rotor flux and the motor currents. The experimental results indicate good speed and load responses from the very low speed range to the high, and also show accurate speed changing performance between the low and the high speed range.

Design of a Robust Stable Flux Observer for Induction Motors

  • Huh, Sung-Hoi;Seo, Sam-Jun;Choy, Ick;Park, Gwi-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.280-285
    • /
    • 2007
  • This paper presents a robustly adaptive flux observer for speed-sensorless induction motor control. The proposed approach employs additional robustifying signals to cope with the parametric uncertainties instead of designing an estimator, which has been normally used in power electronic drives. For that, the sliding-mode like adaptive controls are designed and their gain parameters are determined so that the observer dynamics are stable in the sense of Lyapunov, and furthermore they can guarantee the robustness against parametric uncertainties in induction motor systems. Estimated rotor speed is to be used to generate feedback control signal for the speed sensorless vector control system. To show the validity and efficiency of the proposed system, simulation results are presented.

A New Adaptive Sliding Mode Observer-Based Control of Induction Motors with Uncertainties (새로운 적응 슬라이딩 모드 관측기에 기초한 불확실성을 갖는 유도전동기 제어)

  • Hwang, Young-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1276-1278
    • /
    • 2005
  • In this paper, we propose an adaptive sliding mode observer-based control of induction motors with uncertainties. The proposed adaptive sliding mode flux observer generates estimates both for the unknown parameters(load torque and rotor resistance) and for the unmeasured state variable (rotor fluxes); they converge to the corresponding true value under persistency of excitation which actually holds in typical operating conditions. The proposed controller guarantees speed tracking and bounded signals for every initial condition of the motor. Simulations show that all estimation errors tend quickly to zero so that high tracking performances are achieved both for speed and rotor flux.

  • PDF

Induction Machine Sensorless Vector Control typed by the Field Orientation Using 2 order Flux Observer (2차 자속관측기를 이용한 자계 Orientation 형 유도전동기 센스리스 벡터제어)

  • Hong, S.I.;Son, E.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2067-2069
    • /
    • 2002
  • The study of the vector control of the induction machine without speed sensor is going on and there are the adaptive performance method to use the flux observer. This study is to make the vector control without the speed sensor based on the flux oriented reference vector control theory. This paper proposes the new speed follow-up method to deduce the current value in the current sensor and the 2 order flux observer based on the observer theory and examine the possibility to realize the flux oriented vector control system using the simulation in this proposed method of this study.

  • PDF

Accurate Voltage Parameter Estimation for Grid Synchronization in Single-Phase Power Systems

  • Dai, Zhiyong;Lin, Hui;Tian, Yanjun;Yao, Wenli;Yin, Hang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1067-1075
    • /
    • 2016
  • This paper presents an adaptive observer-based approach to estimate voltage parameters, including frequency, amplitude, and phase angle, for single-phase power systems. In contrast to most existing estimation methods of grid voltage parameters, in this study, grid voltage is treated as a dynamic system related to an unknown grid frequency. Based on adaptive observer theory, a full-order adaptive observer is proposed to estimate voltage parameters. A Lyapunov function-based argument is employed to ensure that the proposed estimation method of voltage parameters has zero steady-state error, even when frequency varies or phase angle jumps significantly. Meanwhile, a reduced-order adaptive observer is designed as the simplified version of the proposed full-order observer. Compared with the frequency-adaptive virtual flux estimation, the proposed adaptive observers exhibit better dynamic response to track the actual grid voltage frequency, amplitude, and phase angle. Simulations and experiments have been conducted to validate the effectiveness of the proposed observers.

A Induction Motor Speed Control Using Online Flux Observer (실시간 자속관측기를 이용한 유도전동기 속도제어)

  • Kim, E.G.;Lee, J.H.;Jeon, K.Y.;Lee, S.H.;Oh, B.H.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.391-393
    • /
    • 2007
  • The rotor speed and flux information is most important in the vector control. The accuracy of flux observers for induction machine inherently depends on parameter sensitivity. The control strategy is using online flux observer for flux estimation. In the proposed system, the speed control characteristics using a online flux observer control isn't affected by a load torque parameter disturbance. Simulation results are presented to prove the effectiveness of the adaptive sliding mode controller for the drive variable load of induction motor.

  • PDF

Study on the analysis Adaptive Observers to Control SRM Control Meathod (SRM 제어방법들에 대한 적응관측기들의 분석)

  • Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.160-164
    • /
    • 2007
  • MRAS observer, which is based on adaptive control theory, estimates speed and position by using optimal observer gains on the basis of Lyapunov stability theory. However, in case of MRAS theory, position estimation error is in existence because of non-linearity for inductance variation and limit cycles for position estimation. The adaptive sliding observer based on the variable structure control theory estimates the speed and position for zero of estimation error by using the sliding surface equal to the error between speed and position estimation. The binary observer estimates the rotor speed and rotor flux with alleviation of the high-frequency chattering, and retains the benefits achieved in the conventional sliding observer, such as robustness to parameter and disturbance variations. The speed and position sensorless control of SRM under the load and inductance variation is verified by the experimental results.

  • PDF

A Study on Adaptive Load Torque Observer for Robust Precision Position Control of BLDC Motor (적응제어형 외란 관측기를 이요한 BLDC 전동기의 정밀위치제어에 대한 연구)

  • 고종선;윤성구
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.4-9
    • /
    • 1999
  • A new control method for precision robust position control of a brushless DC (BLDC) motor using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method Recently, many of these drive systems use BLDC motors to avoid backlashe. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observe gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimenta results are presented in the paper.

  • PDF