• 제목/요약/키워드: Adaptive flux observer

검색결과 82건 처리시간 0.027초

유도전동기 구동을 위한 신경망 적응 관측기에 대한 연구 (A Study on the Neural Adaptive Observer for I.M. Drives)

  • 전희종;김병진;손진근;정을기;김진상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.216-218
    • /
    • 1995
  • In this article a neural network adaptive observer is proposed and applied to the case of induction motor control. The high performance vector control drives require exact knowledge of rotor flux. Because rotor time constant is needed to observe rotor flux, the accurate estimation of rotor time constant is important. For these problems, proposed observer which comprises neural network flux observer and neural network torque observer is trained to learn the flux dynamics and torque dynamics and subject to further on-line training by means of a backpropagation algorithem. Therefore it has been shown that the robust control of induction motor neglects the rotor time constant variations.

  • PDF

비선형 외란 관측기를 이용한 유도전동기의 강인 적응 백스테핑 제어 (Robust Adaptive Backstepping Control of Induction Motors Using Nonlinear Disturbance Observer)

  • 이은욱
    • 전기학회논문지P
    • /
    • 제57권2호
    • /
    • pp.127-134
    • /
    • 2008
  • In this paper, we propose a robust adaptive backstepping control of induction motors with uncertainties using nonlinear disturbance observer(NDO). The proposed NDO is applied to estimate the time-varying lumped uncertainty which are derived from unknown motor parameters and load torque, but NDO error does not converge to zero since the derivate of lumped uncertainty is not zero. Then the fuzzy neural network(FNN) is presented to estimate the NDO error such that the rotor speed to converge to a small neighborhood of the desired trajectory. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer. Simulation results are provided to verify the effectiveness of the proposed approach.

An Improved Flux Observer for Sensorless Permanent Magnet Synchronous Motor Drives with Parameter Identification

  • Lin, Hai;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.516-523
    • /
    • 2013
  • This paper investigates an improved stator flux linkage observer for sensorless permanent magnet synchronous motor (PMSM) drives using a voltage-based flux linkage model and an adaptive sliding mode variable structure. We propose a new observer design that employs an improved sliding mode reaching law to achieve better estimation accuracy. The design includes two models and two adaptive estimating laws, and we illustrate that the design is stable using the Popov hyper-stability theory. Simulation and experimental results demonstrate that the proposed estimator accurately calculates the speed, the stator flux linkage, and the resistance while overcoming the shortcomings of traditional estimators.

직접 토오크 제어를 이용한 센스리스 유도전동기의 속도제어 (A Speed Control of Sensorless Induction Motor using Direct Torque Control)

  • 박건우;고태언;하홍곤
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2001년도 학술대회논문집
    • /
    • pp.181-185
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). The drive is based on Mode1 Reference Adaptive System (MRAS) using state observer as a reference model fat flux estimation. The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAS) with rotor flux linkages for the speed turning aignal at low speed range, two hysteresis controllers. The Proposed system is verified through simulation.

  • PDF

반복 적응자속관측기를 이용한 초고속 영구자석형 동기전동기의 전영역 센서리스 제어 (Sensorless Control of High-speed Type PMSM in Wide Speed Range using an Iterative Adaptive Flux Observer)

  • 김종무;최정원;이석규
    • 전력전자학회논문지
    • /
    • 제14권2호
    • /
    • pp.168-175
    • /
    • 2009
  • 본 논문은 에어포일 베어링을 적용한 45,000[rpm]/22[kW]급 초고속 영구자석형 동기전동기의 센서리스 제어을 위한 개선된 알고리즘을 제안한다. 에어포일 베어링이 적용된 전동기를 정지상태에서 초기 기동시 부터 고속영역까지 전 속도 영역에 걸쳐 센서리스 알고리즘을 구현하기 위하여 반복 적응자속관측기를 제안하여 회전자의 회전각 및 속도를 실시간으로 추정하여 센서리스 제어 알고리즘을 구현하였다. 기존 적응자속관측기의 주파수 응답특성을 개선하고 넓은 속도 범위에서 안정된 응답을 얻기 위하여 속도에 따른 회전자의 추정 위치각과 실제 회전각과의 오차를 시뮬레이션을 통하여 분석한 후 안정된 위상지연 특성을 나타내는 반복 횟수를 얻고 전류제어 주기 내에서 관측기를 반복 수행하여 적응자속관측기의 동특성 성능을 개선하는 알고리즘을 제안하였다. 또한 제안된 반복 적응 자속관측기를 적용한 센서리스 알고리즘의 타당성을 입증하기 위하여 실험을 통하여 검증하였다.

적응 자속 관측기를 이용한 유도전동기의 효율 최적화 제어 (Efficiency Optimization Control of Induction Motor using Adaptive Flux Observer)

  • 정동화;박기태;이홍균
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.88-95
    • /
    • 2001
  • Stator core loss has significant adverse effects when an induction motor is controlled by the conventional vector control method. Therefore, taking core toss into account should make it possible to control the torque very precisely. This paper proposes a speed sensorless vector control method for an induction motor at optimum efficiency and high response taking core loss account. The proposed vector control system consists of a speed adaptive rotor flux observer which takes core loss into account and employs a direct vector control which compensates for the influence of core loss. Also, in this paper, a vector controlled induction motor with a deadbeat rotor flux controller is developed. The method ensures optimum efficiency in the steady state without degradation of the dynamic response. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템 (A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control)

  • 김민회;김남훈;백원식
    • 전기학회논문지P
    • /
    • 제51권1호
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

Asymptotically Stable Adaptive Load Torque Observer for Precision Position Control of BLDC Motor

  • 고종선
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.97-100
    • /
    • 1997
  • A new control method for the robust position control of a brushless DC(BLDC) motor using the asymptotically stable adaptive load torque observer is presented. A precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method. And the application of the load torque observer is published in [1] using fixed gain. However, the flux linkage is not exactly known for a load torque observer. Therefore, a model reference adaptive observer is considered to overcome the problem of the unknown parameter in this paper. And stability analysis is carried out using Liapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current having the fast response.

  • PDF

직접 토크제어에 의한 위치검출기 없는 유도전동기의 고성능 모션제어 시스템 (A High-Performance Position Sensorless Motion Control System of Induction Motor with Direct Torque Control)

  • 김민회;김남훈;백원식
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권7호
    • /
    • pp.399-405
    • /
    • 2002
  • This paper presents an implementation of digital high-performance Position sensorless motion control system of an induction motor drives with Direct Torque Control(DTC). The system consist of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controller, optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. The speed observer is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal. The simulation and experimental results are provided to evacuate the consistency and the performance of the suggested position sensorless control algorithm. The developed position sensorless system are shown a good motion control response characteristic and high performance features using 2.2[kw] general purposed induction motor.

PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구 (Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM)

  • 고종선;윤성구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권3호
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF