• Title/Summary/Keyword: Adaptive Particle Swarm Optimization

Search Result 44, Processing Time 0.024 seconds

Adaptive Boundary Correction based Particle Swarm Optimization for Activity Recognition (사용자 행동인식을 위한 적응적 경계 보정기반 Particle Swarm Optimization 알고리즘)

  • Heo, Seonguk;Kwon, Yongjin;Kang, Kyuchang;Bae, Changseok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1166-1169
    • /
    • 2012
  • 본 논문은 사용자 행동인식을 위해 기존 PSO (Particle Swarm Optimization) 알고리즘의 경계선을 통한 데이터 분류에서 데이터의 수집환경에 의해 발생하는 문제를 벡터의 길이비교를 이용한 보정을 통해 보완한 알고리즘을 제안한다. 기존의 PSO 알고리즘은 데이터 분류를 위해서 데이터의 최소, 최대값을 이용하여 경계를 생성하고, 이를 이용하여 데이터를 분류하였다. 그러나 PSO를 이용하여 행동인식을 할 때 행동이 수집되는 환경에 따라서 경계에 포함되지 못해 행동이 분류되지 못하는 문제가 있다. 이러한 분류의 문제를 보완하기 위해 경계를 벗어난 데이터와 각 행동을 대표하는 데이터의 벡터 길이를 계산하고 최소길이를 비교하여 분류한다. 실험결과, 기존 PSO 방법에 비해 개선된 방법이 평균적으로 앉기 1%, 걷기 7%, 서기 7%의 개선된 결과를 얻었다.

Swarm Based Robust Object Tracking Algorithm Using Adaptive Parameter Control (적응적 파라미터 제어를 이용하는 스웜 기반의 강인한 객체 추적 알고리즘)

  • Bae, Changseok;Chung, Yuk Ying
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.39-50
    • /
    • 2017
  • Moving object tracking techniques can be considered as one of the most essential technique in the video understanding of which the importance is much more emphasized recently. However, irregularity of light condition in the video, variations in shape and size of object, camera motion, and occlusion make it difficult to tracking moving object in the video. Swarm based methods are developed to improve the performance of Kalman filter and particle filter which are known as the most representative conventional methods, but these methods also need to consider dynamic property of moving object. This paper proposes adaptive parameter control method which can dynamically change weight value among parameters in particle swarm optimization. The proposed method classifies each particle to 3 groups, and assigns different weight values to improve object tracking performance. Experimental results show that our scheme shows considerable improvement of performance in tracking objects which have nonlinear movements such as occlusion or unexpected movement.

Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing

  • Ajami, Ali;Aghajani, Gh.;Pourmahmood, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.

Abdominal-Deformation Measurement for a Shape-Flexible Mannequin Using the 3D Digital Image Correlation

  • Liu, Huan;Hao, Kuangrong;Ding, Yongsheng
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.79-91
    • /
    • 2017
  • In this paper, the abdominal-deformation measurement scheme is conducted on a shape-flexible mannequin using the DIC technique in a stereo-vision system. Firstly, during the integer-pixel displacement search, a novel fractal dimension based on an adaptive-ellipse subset area is developed to track an integer pixel between the reference and deformed images. Secondly, at the subpixel registration, a new mutual-learning adaptive particle swarm optimization (MLADPSO) algorithm is employed to locate the subpixel precisely. Dynamic adjustments of the particle flight velocities that are according to the deformation extent of each interest point are utilized for enhancing the accuracy of the subpixel registration. A test is performed on the abdominal-deformation measurement of the shape-flexible mannequin. The experiment results indicate that under the guarantee of its measurement accuracy without the cause of any loss, the time-consumption of the proposed scheme is significantly more efficient than that of the conventional method, particularly in the case of a large number of interest points.

Robust Object Tracking based on Weight Control in Particle Swarm Optimization (파티클 스웜 최적화에서의 가중치 조절에 기반한 강인한 객체 추적 알고리즘)

  • Kang, Kyuchang;Bae, Changseok;Chung, Yuk Ying
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.15-29
    • /
    • 2018
  • This paper proposes an enhanced object tracking algorithm to compensate the lack of temporal information in existing particle swarm optimization based object trackers using the trajectory of the target object. The proposed scheme also enables the tracking and documentation of the location of an online updated set of distractions. Based on the trajectories information and the distraction set, a rule based approach with adaptive parameters is utilized for occlusion detection and determination of the target position. Compare to existing algorithms, the proposed approach provides more comprehensive use of available information and does not require manual adjustment of threshold values. Moreover, an effective weight adjustment function is proposed to alleviate the diversity loss and pre-mature convergence problem in particle swarm optimization. The proposed weight function ensures particles to search thoroughly in the frame before convergence to an optimum solution. In the existence of multiple objects with similar feature composition, this algorithm is tested to significantly reduce convergence to nearby distractions compared to the other existing swarm intelligence based object trackers.

Particle Swarm Optimization Using Adaptive Boundary Correction for Human Activity Recognition

  • Kwon, Yongjin;Heo, Seonguk;Kang, Kyuchang;Bae, Changseok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.2070-2086
    • /
    • 2014
  • As a kind of personal lifelog data, activity data have been considered as one of the most compelling information to understand the user's habits and to calibrate diagnoses. In this paper, we proposed a robust algorithm to sampling rates for human activity recognition, which identifies a user's activity using accelerations from a triaxial accelerometer in a smartphone. Although a high sampling rate is required for high accuracy, it is not desirable for actual smartphone usage, battery consumption, or storage occupancy. Activity recognitions with well-known algorithms, including MLP, C4.5, or SVM, suffer from a loss of accuracy when a sampling rate of accelerometers decreases. Thus, we start from particle swarm optimization (PSO), which has relatively better tolerance to declines in sampling rates, and we propose PSO with an adaptive boundary correction (ABC) approach. PSO with ABC is tolerant of various sampling rate in that it identifies all data by adjusting the classification boundaries of each activity. The experimental results show that PSO with ABC has better tolerance to changes of sampling rates of an accelerometer than PSO without ABC and other methods. In particular, PSO with ABC is 6%, 25%, and 35% better than PSO without ABC for sitting, standing, and walking, respectively, at a sampling period of 32 seconds. PSO with ABC is the only algorithm that guarantees at least 80% accuracy for every activity at a sampling period of smaller than or equal to 8 seconds.

PDSO tuning of PFC-SAC fault tolerant flight control system

  • Alaimo, Andrea;Esposito, Antonio;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.349-369
    • /
    • 2019
  • In the design of flight control systems there are issues that deserve special consideration and attention such as external perturbations or systems failures. A Simple Adaptive Controller (SAC) that does not require a-priori knowledge of the faults is proposed in this paper with the aim of realizing a fault tolerant flight control system capable of leading the pitch motion of an aircraft. The main condition for obtaining a stable adaptive controller is the passivity of the plant; however, since real systems generally do not satisfy such requirement, a properly defined Parallel Feedforward Compensator (PFC) is used to let the augmented system meet the passivity condition. The design approach used in this paper to synthesize the PFC and to tune the invariant gains of the SAC is the Population Decline Swarm Optimization ($P_DSO$). It is a modification of the Particle Swarm Optimization (PSO) technique that takes into account a decline demographic model to speed up the optimization procedure. Tuning and flight mechanics results are presented to show both the effectiveness of the proposed $P_DSO$ and the fault tolerant capability of the proposed scheme to control the aircraft pitch motion even in presence of elevator failures.

Optimization of Decision Tree for Classification Using a Particle Swarm

  • Cho, Yun-Ju;Lee, Hye-Seon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.4
    • /
    • pp.272-278
    • /
    • 2011
  • Decision tree as a classification tool is being used successfully in many areas such as medical diagnosis, customer churn prediction, signal detection and so on. The main advantage of decision tree classifiers is their capability to break down a complex structure into a collection of simpler structures, thus providing a solution that is easy to interpret. Since decision tree is a top-down algorithm using a divide and conquer induction process, there is a risk of reaching a local optimal solution. This paper proposes a procedure of optimally determining thresholds of the chosen variables for a decision tree using an adaptive particle swarm optimization (APSO). The proposed algorithm consists of two phases. First, we construct a decision tree and choose the relevant variables. Second, we find the optimum thresholds simultaneously using an APSO for those selected variables. To validate the proposed algorithm, several artificial and real datasets are used. We compare our results with the original CART results and show that the proposed algorithm is promising for improving prediction accuracy.

Swarm Control of Distributed Autonomous Robot System based on Artificial Immune System using PSO (PSO를 이용한 인공면역계 기반 자율분산로봇시스템의 군 제어)

  • Kim, Jun-Yeup;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.465-470
    • /
    • 2012
  • This paper proposes a distributed autonomous control method of swarm robot behavior strategy based on artificial immune system and an optimization strategy for artificial immune system. The behavior strategies of swarm robot in the system are depend on the task distribution in environment and we have to consider the dynamics of the system environment. In this paper, the behavior strategies divided into dispersion and aggregation. For applying to artificial immune system, an individual of swarm is regarded as a B-cell, each task distribution in environment as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows: When the environmental condition changes, the agent selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other agent using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. In order to decide more accurately select the behavior strategy, the optimized parameter learning procedure that is represented by stimulus function of antigen to antibody in artificial immune system is required. In this paper, particle swarm optimization algorithm is applied to this learning procedure. The proposed method shows more adaptive and robustness results than the existing system at the viewpoint that the swarm robots learning and adaptation degree associated with the changing of tasks.

Intelligent fuzzy inference system approach for modeling of debonding strength in FRP retrofitted masonry elements

  • Khatibinia, Mohsen;Mohammadizadeh, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.283-293
    • /
    • 2017
  • The main contribution of the present paper is to propose an intelligent fuzzy inference system approach for modeling the debonding strength of masonry elements retrofitted with Fiber Reinforced Polymer (FRP). To achieve this, the hybrid of meta-heuristic optimization methods and adaptive-network-based fuzzy inference system (ANFIS) is implemented. In this study, particle swarm optimization with passive congregation (PSOPC) and real coded genetic algorithm (RCGA) are used to determine the best parameters of ANFIS from which better bond strength models in terms of modeling accuracy can be generated. To evaluate the accuracy of the proposed PSOPC-ANFIS and RCGA-ANFIS approaches, the numerical results are compared based on a database from laboratory testing results of 109 sub-assemblages. The statistical evaluation results demonstrate that PSOPC-ANFIS in comparison with ANFIS-RCGA considerably enhances the accuracy of the ANFIS approach. Furthermore, the comparison between the proposed approaches and other soft computing methods indicate that the approaches can effectively predict the debonding strength and that their modeling results outperform those based on the other methods.