• Title/Summary/Keyword: Adaptive PID control

검색결과 190건 처리시간 0.028초

무인항공기 작동기 컨트롤러를 위한 퍼지 자동 이득 조정 PID 제어 연구 (Research of Fuzzy Auto gain tuning control to apply actuator controller of Unmaned Aerial Vehicle)

  • 김태완;백진욱;이형철
    • 한국항행학회논문지
    • /
    • 제13권6호
    • /
    • pp.813-819
    • /
    • 2009
  • 무인항공기의 에일러론 및 플랩, 엘리베이터 등을 제어하기위한 작동기들은 구조적으로 Time variant한 비선형적인 특성을 가지고 있을 뿐 아니라, 비행 중에 풍향 및 풍량에 따라 모델링하기 힘든 외란이 발생할 경우가 많이 발생하기 때문에 우수한 제어성능을 보이는 제어기 설계에 많은 어려움이 있었다. 본 논문에서는 기존의 PID 제어기의 장점을 그대로 살리면서 실시간으로 변화하는 시스템에 adaptive하게 대응할 수 있고 Auto gain tuning을 이용하여 개발자의 시간과 노력을 현저히 줄일 수 있는 Fuzzy Auto gain tuning PID 제어 알고리즘을 비행체 Actuator 제어에 적용한 연구내용을 기술하였다.

  • PDF

신경회로망 보상기를 갖는 비선형 PID 제어기 (Nonlinear PID Controller with Neural Network based Compensator)

  • 이창구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권5호
    • /
    • pp.225-234
    • /
    • 2000
  • In this paper, we present an nonlinear PID controller with network based compensator which consists of a conventional PID controller that controls the linear components and neuro-compensator that controls the output errors and nonlinear components. This controller is based on the Harris's concept where he explained that the adaptive controller consists of the PID control term and the disturbance compensating term. The resulting controller's architecture is also found to be very similar to that of Wang's controller. This controller adds a self-tuning ability to the existing PID controller without replacing it by compensating the output errors through the neuro-compensator. Various simulations and comparative studies have proven that the proposed nonlinear PID controller produces superior results to other existing PID controllers. When applied to an actual magnetic levitation system which is known to be very nonlinear, it has also produced an excellent results.

  • PDF

Autotuning fuzzy PID controller for position control of DC servo motor

  • Park, Jong-Kun;Lim, Young-Cheol;Cho, Kyeng-Young;Ryoo, Young-Jae;Oh, Dong-Hwan;Wi, Seog-O;Lee, Hong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.257-262
    • /
    • 1994
  • This paper describes an autotuning fuzzy PID controller for a position control of DC serve motor. Because ZNM(Ziegler-Nichols Method) with relay feedback has the difficulty in re-tuning the PID parameters and adaptive method has complex algorithm, a new method to overcome those problems is required. The proposed scheme determines the initial PID gains by using ZNM with relay feedback, and then re-tunes the optimal PID parameters by using fuzzy expert system whenever control conditions are changed. To show the validity of the proposed method, a position control of DC servo motor is illustrated by computer simulation and is experimented by a designed controller.

  • PDF

가변하중을 받는 유압실린더의 제어특성개선 (Control Characteristics Improvement of Single Rod Hydraulic Cylinder Subjected to Varying Load)

  • 염만오
    • 한국기계가공학회지
    • /
    • 제2권4호
    • /
    • pp.46-52
    • /
    • 2003
  • For position control of electro-hydraulic servo system, single rod cylinders and double rod cylinders are used. Single rod cylinders have simple structure for manufacturing but different volume ratio of two sides induce to non-linearity in process of then mathematical modeling. So only with conventional PID control method it is difficult to control single rod cylinders precisely. For mole precise position control of single rod cylinders, a controller which is inserted a velocity feedback PID controller and MRAC controller are proposed. With experiment control performances of three control methods are compared. In case of experiment, for external varying load to the system, a hydraulic cylinder and a pressure control valve are used. In conclusion a MRAC is considered a suitable control method for external varying load.

  • PDF

롤투롤 시스템의 와인더 반경 추정을 이용한 와인더 장력의 가변 PID이득 제어 (Variable PID Gain Control of Winder Tension of Roll-to-Roll Printing System using Estimation of Winder-Roll Radius)

  • 박종찬;전성웅;남기상;김충환
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.755-760
    • /
    • 2013
  • The dynamics of the winder roller of a roll-to-roll printing system for printed electronics is a time-varying system because of the variation of the winder roller radius owing to rewinding or unwinding of the web. Therefore, an adaptive control method considering the time-variant characteristics is required for precise tension control. In this study, the variable PID gain method is applied to the actual roll-to-roll system and verified by experiments for unwinder tension control. The required value of the winder roller radius for the application of the variable PID gain is estimated from the measurement of the winder tension and winder motor torque. The simulation results as well as experimental results show that the fixed PID gain control cannot stabilize the tension of the winder roller with varying winder roller radius. On the other hand, the variable PID gain method can control the tension of the winder roller regardless of the winder roller radius.

디지탈 신호처리기를 사용한 스카라 로보트의 실시간 적응제어기 설계 (Design of a Real Time Adaptive Controller for SCARA Robot Using Digitl Signal Process)

  • 김용태;서운학;한성현;이만형;김성권
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.472-477
    • /
    • 1996
  • This paper presents a new approachtothe design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The prpposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

A Study on the Design of Feedback Adaptive Controller

  • Shin, Wee-Jae;Lee, Sang-Yun
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.185-188
    • /
    • 1998
  • In this paper, we propose a feedback adaptive controller which need not adjustment of the scale factor. Numerical examples are included to illustrate the procedure of a adaptive control and to show the performance of the control system. We can observe that the output of control system, converges toward the reference of response.

  • PDF

Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller

  • Muthalif, Asan G.A.;Kasemi, Hasanul B.;Nordin, N.H. Diyana;Rashid, M.M.;Razali, M. Khusyaie M.
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.85-97
    • /
    • 2017
  • The aim of this research is to develop a new method to use magnetorheological (MR) damper for vibration control. It is a new way to achieve the MR damper response without the need to have detailed constant parameters estimations. The methodology adopted in designing the control structure in this work is based on the experimental results. In order to investigate and understand the behaviour of an MR damper, an experiment is first conducted. Force-displacement and force-velocity responses with varying current have been established to model the MR damper. The force for upward and downward motions of the damper piston is found to be increasing with current and velocity. In cyclic motion, which is the combination of upward and downward motions of the piston, the force with hysteresis behaviour is seen to be increasing with current. In addition, the energy dissipated is also found to be linear with current. A proportional-integral-derivative (PID) controller, based on the established characteristics for a quarter car suspension model, has been adapted in this study. A fuzzy rule based PID controller (F-PID) is opted to achieve better response for a varying frequency input. The outcome of this study can be used in the modelling of MR damper and applied to control engineering. Moreover, the identified behaviour can help in further development of the MR damper technology.

지연시간이 고려된 CAN 기반 피드백 제어시스템의 한국형 고속전철 여압시스템 적용 (CAN-based Feedback Control System Applied to Korean high-speed Train Pressurization System considering Network Delay)

  • 곽권천;김홍렬;김주민;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2445-2447
    • /
    • 2002
  • In this paper, CAN-based feedback control system is proposed for the pressurization system of korean high-speed train. The control performance of the system is evaluated. According to the requirement of the pressurization system A process model considering network delay and an adaptive PID control method based on the process model are proposed here. And it is shown that the proposed adaptive PID control method considering the network delay has on adequate feature compared to some other existing methods consequently it can be considered to be applied the pressurization system of korean high-speed train.

  • PDF

디지털 신호처리기를 사용한 산업용 로봇의 실시간 적응제어기 설계 (Design of a real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor)

  • 최근국
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.154-161
    • /
    • 1999
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF