• 제목/요약/키워드: Adaptive Neural Networks

검색결과 326건 처리시간 0.029초

Intelligent Control by Immune Network Algorithm Based Auto-Weight Function Tuning

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.120.2-120
    • /
    • 2002
  • In this paper auto-tuning scheme of weight function in the neural networks has been suggested by immune algorithm for nonlinear process. A number of structures of the neural networks are considered as learning methods for control system. A general view is provided that they are the special cases of either the membership functions or the modification of network structure in the neural networks. On the other hand, since the immune network system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation. Also. It can provi..

  • PDF

An Adaptive Tracking Control for Robotic Manipulators based on RBFN

  • Lee, Min-Jung;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권2호
    • /
    • pp.96-101
    • /
    • 2007
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose an adaptive tracking control for robot manipulators using the radial basis function network (RBFN) that is e. kind of neural networks. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed adaptive tracking controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

비선형성이 존재하는 동적 시스템의 식별과 제어 (Identification and control of dynamical system including nonlinearities)

  • 김규남;조규상;양태진;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.236-242
    • /
    • 1992
  • Multi-layered neural networks are applied to the identification and control of nonlinear dynamical system. Traditional adaptive control techniques can only deal with linear systems or some special nonlinear systems. A scheme for combining multi-layered neural networks with model reference network techniques has the capability to learn the nonlinearity and shows the great potential for adaptive control. In many interesting cases the system can be described by a nonlinear model in which the control input appears linearly. In this paper the identification of linear and nonlinear part are performed simultaneously. The projection algorithm and the new estimation method which uses the delta rule of neural network are compared throughout the simulation. The simulation results show that the identification and adaptive control schemes suggested are practically feasible and effective.

  • PDF

미지의 제어 방향성과 비어파인 비선형성을 고려한 신경망 기반 외란 관측기와 추종기 설계 (Neural-networks-based Disturbance Observer and Tracker Design in the Presence of Unknown Control Direction and Non-affine Nonlinearities)

  • 김형오;유성진
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.666-671
    • /
    • 2017
  • A disturbance-observer-based adaptive neural tracker design problem is investigated for a class of perturbed uncertain non-affine nonlinear systems with unknown control direction. A nonlinear disturbance observer (NDO) design methodology using neural networks is presented to construct a tracking control scheme with the attenuation effect of an external disturbance. Compared with previous control results using NDO for nonlinear systems in non-affine form, the major contribution of this paper is to design a NDO-based adaptive tracker without the sign information of the control coefficient. The stability of the closed-loop system is analyzed in the sense of Lyapunov stability.

Adaptive Neural Network Control for Robot Manipulators

  • Lee, Min-Jung;Choi, Young-Kiu
    • KIEE International Transaction on Systems and Control
    • /
    • 제12D권1호
    • /
    • pp.43-50
    • /
    • 2002
  • In the recent years neural networks have fulfilled the promise of providing model-free learning controllers for nonlinear systems; however, it is very difficult to guarantee the stability and robustness of neural network control systems. This paper proposes an adaptive neural network control for robot manipulators based on the radial basis function netwo.k (RBFN). The RBFN is a branch of the neural networks and is mathematically tractable. So we adopt the RBFN to approximate nonlinear robot dynamics. The RBFN generates control input signals based on the Lyapunov stability that is often used in the conventional control schemes. The saturation function is also chosen as an auxiliary controller to guarantee the stability and robustness of the control system under the external disturbances and modeling uncertainties.

  • PDF

대규모 광학적 구현을 위한 TAG 신경회로망 모델 (TAG neural network model for large-sized optical implementation)

  • 이혁재
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1991년도 제6회 파동 및 레이저 학술발표회 Prodeedings of 6th Conference on Waves and Lasers
    • /
    • pp.35-40
    • /
    • 1991
  • In this paper, a new adaptive learning algorithm, Training by Adaptive Gain (TAG) for optical implementation of large-sized neural networks has been developed and its electro-optical implementation for 2-dimensional input and output neurons has been demostrated. The 4-dimensional global fixed interconnections and 2-dimensional adaptive gain-controls are implemented by multi-facet computer generated holograms and LCTV spatial light modulators, respectively. When the input signals pass through optical system to the output classifying layer, the TAG adaptive learning algorithm is implemented by a personal computer. The system classifies three 5$\times$5 input patterns correctly.

  • PDF

다관절 로봇의 실시간 자세제어를 위한 신경회로망 적응제어의 적용 (Application of Neural Network Adaptive Control for Real-time Attitude Control of Multi-Articulated Robot)

  • 이성수;박왈서
    • 조명전기설비학회논문지
    • /
    • 제25권9호
    • /
    • pp.50-55
    • /
    • 2011
  • This research is to apply the adaptive control of neuron networks for the real-time attitude control of Multi-articulated robot. Multi-articulated robot is expressed with a complicated mathematical model on account of the mechanic, electric non-linearity which each articulation of mechanism has, and includes an unstable factor in time of attitude control. If such a complex expression is included in control operation, it leads to the disadvantage that operation time is lengthened. Thus, if the rapid change of the load or the disturbance is given, it is difficult to fulfill the control of desired performance. In this research we used the response property curve of the robot instead of the activation function of neural network algorithms, so the adaptive control system of neural networks constructed without the information of modeling can perform a real-time control. The proposed adaptive control algorithm generated control signs corresponding to the non-linearity of Multi-articulated robot, which could generate desired motion in real time.

뉴로 - 퍼지 GMDH 모델 및 이의 이동통신 예측문제에의 응용 (Neuro-Fuzzy GMDH Model and Its Application to Forecasting of Mobile Communication)

  • 황흥석
    • 산업공학
    • /
    • 제16권spc호
    • /
    • pp.28-32
    • /
    • 2003
  • In this paper, the fuzzy group method data handling-type(GMDH) neural networks and their application to the forecasting of mobile communication system are described. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to neural networks, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of neuro-fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the neuro-fuzzy GMDH. The GMDH-type neural networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the neuro-fuzzy GMDH. The computer program is developed and successful applications are shown in the field of estimating problem of mobile communication with the number of factors considered.

신경회로망 제어기을 이용한 볼-빔 시스템의 안정화 위치제어 (Stabilization Position Control of a Ball-Beam System Using Neural Networks Controller)

  • 탁한호;추연규
    • 한국항해학회지
    • /
    • 제23권3호
    • /
    • pp.35-44
    • /
    • 1999
  • This research aims to seek active control of ball-beam position stability by resorting to neural networks whose layers are given bias weights. The controller consists of an LQR (linear quadratic regulator) controller and a neural networks controller in parallel. The latter is used to improve the responses of the established LQR control system, especially when controlling the system with nonlinear factors or modelling errors. For the learning of this control system, the feedback-error learning algorithm is utilized here. While the neural networks controller learns repetitive trajectories on line, feedback errors are back-propagated through neural networks. Convergence is made when the neural networks controller reversely learns and controls the plant. The goals of teaming are to expand the working range of the adaptive control system and to bridge errors owing to nonlinearity by adjusting parameters against the external disturbances and change of the nonlinear plant. The motion equation of the ball-beam system is derived from Newton's law. As the system is strongly nonlinear, lots of researchers have depended on classical systems to control it. Its applications of position control are seen in planes, ships, automobiles and so on. However, the research based on artificial control is quite recent. The current paper compares and analyzes simulation results by way of the LQR controller and the neural network controller in order to prove the efficiency of the neural networks control algorithm against any nonlinear system.

  • PDF