• Title/Summary/Keyword: Adaptive Interpolation Filter

Search Result 55, Processing Time 0.024 seconds

An Edge Profile Adaptive Bi-directional Diffusion Interpolation

  • Kim, Bong-Joe;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.501-509
    • /
    • 2011
  • In this paper, we propose an edge profile adaptive bi-directional diffusion interpolation method which consists of shock filter and level set. In recent years many interpolation methods have been proposed but all methods have some degrees of artifacts such as blurring and jaggies. To solve these problems, we adaptively apply shock filter and level set method where shock filter enhances edge along the normal direction and level set method removes jaggies artifact along the tangent direction. After the initial interpolation, weights of shock filter and level set are locally adjusted according to the edge profile. By adaptive coupling shock filter with level set method, the proposed method can remove jaggies artifact and enhance the edge. Experimental results show that the average PSNR and MSSIM of our method are increased, and contour smoothness and edge sharpness are also improved.

Image Reconstruction Using 2D M-ch Perfect Reconstruction Filter Bank with Optimized Adaptive interpolation kernel (최적 적응 보간 커널 기반 2차원 M-채널 완전 복원 Filter Bank를 이용한 이미지 재구성)

  • Kim, Jin-Young;Nam, Sang-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.795-798
    • /
    • 2007
  • In this paper, we propose an image reconstruction method utilizing an optimized adaptive interpolation kernel along with a 2D M-channel perfect reconstruction filter bank (M-ch PR-FB) structure. In particular, the proposed approach leads to construction of a sharper image than a direct conversion, still preserving high frequency components of the original image through the subband processing of the 2D M-ch PR-FB. Finally, the image quality of the proposed approach is demonstrated by comparing with those of the direct methods using conventional interpolation kernels.

High Performance De-interlacing Algorithm Based on Region Adaptive Interpolation Filter

  • Yang, Yang;Chen, Xiangdong;Wang, Jin;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.200-203
    • /
    • 2011
  • In order to convert interlaced video into progressive scanning format, this paper proposed a high performance de-interlacing algorithm based on region adaptive interpolation filter design. Specifically, usage of the 6-tap filter is only for the most complex region, but for the smooth and regular edge region, much more correlated filter such as 2-tap or 4-tap filter should be used instead. According to the experimental results, the proposed algorithm has achieved noticeably good performance.

  • PDF

New Video Compression Method based on Low-complexity Interpolation Filter-bank (저 복잡도 보간 필터 뱅크 기반의 새로운 비디오 압축 방법)

  • Nam, Jung-Hak;Jo, Hyun-Ho;Sim, Dong-Gyu;Choi, Byeong-Doo;Cho, Dae-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.165-174
    • /
    • 2010
  • The H.264/AVC standard obtained better performance than previous compression standards, but it also increased the computational complexity of CODEC simultaneously. Various techniques recently included at the KTA software developed by VCEG also were increasing its complexity. Especially adaptive interpolation filter has more complexity than two times due to development for coding efficiency. In this paper, we propose low-complexity filter bank to improve speed up of decoding and coding gain. We consists of filter bank of a fixed-simple filter for low-complexity and adaptive interpolation filter for high coding efficiency. Then we compensated using optimal filter at each macroblock-level or frame-level. Experimental results shows a similar coding efficiency compared to existing adaptive interpolation filter and decoding speed of approximately 12% of the entire decoder gained.

Boundary Strength based Adaptive Interpolation Filter (경계 강도 기반의 적응적 보간 필터)

  • Song, Yunseok;Choi, Jung-Ah;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.26-27
    • /
    • 2014
  • This paper presents an adaptive interpolation filtering scheme for the High Efficiency Video Coding (HEVC) standard. In regards to interpolation for motion estimation and compensation, the conventional HEVC employs 8-tap and 4-tap filters for luma and chroma samples, respectively. Coefficients in such filters are determined by discrete cosine transform (DCT). In the proposed scheme, boundary strength values are stored after the execution of the deblocking filter. For each block, the sum of boundary strength values is calculated to indicate whether its region is complex or simple. Consequently, based on the region classification, 12-tap and 8-tap interpolation filters are used for complex and simple regions, respectively. This process is applied to luma sample interpolation only. Simulation results show 1.8% average BD-rate reduction compared to the conventional method.

  • PDF

A Motion-Adaptive De-interlacing Method using Motion Compensated Interpolation (움직임 보상을 통한 움직임 기반의 De-interlacing 기법)

  • 이성규;강석규;이동호
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.371-374
    • /
    • 2001
  • 본 논문에서는 움직임 보상을 이용한 Motion-Adaptive De-interlacing Method를 제안 한다. 정확한 움직임 추정을 위해서 Pre-filter로서 EBMF(Edge Based Median Filter)를 사용하며 새로운 Block Matching Method를 제안한다. Temporal Filter로서 Motion Missing Error를 제거하기 위해 입력 영상의 움직임 영역에 따라 각각 다른 임계 값을 적용하는 AMPDF(Adaptive Minimum Pixel Difference Filter)를 적용하였으며 MMD(Maximum Motion Detection)와 SAD(Sum of Difference)를 이용하여 빠른 움직임 영역에서 화질을 향상시켰다. 최종적으로 잘못된 움직임 보상에 기인하는 화질의 열화를 방지하기 위한 Motion Correction Filter를 제안한다.

  • PDF

Sub-pixel Image Magnification Using Adaptive Linear Interpolation (적응적인 선형 보간을 이용한 부화소 기반 영상 확대)

  • Yoo, Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.1000-1009
    • /
    • 2006
  • We propose an adaptive linear interpolation locating sub-pixels. We utilize a pixel-based parameter in the conventional linear interpolation. To optimally obtain the parameter, we propose a generic interpolation structure including a low pass filter and minimum mean square error. We also propose a simple version of the generic interpolation method, which obtain a closed-form solution. Simulation results show that the proposed method is superior to the state-of-the-art methods such as warped distance linear interpolation and shifted linear interpolation, as well as the conventional method such as the linear interpolation and the cubic convolution interpolation in terms of the subjective and objective image quality.

  • PDF

Performance Evaluations of the Interpolation Methods Under the various illumination intensities and its Application to the Adaptive Interpolation for Image Sensors (이미지센서를 위한 조도에 따른 보간 기법의 성능 평가와 이를 이용한 가변적 보간 기법)

  • Kim, Byung-Su;Paik, Doo-Won
    • Journal of Internet Computing and Services
    • /
    • v.9 no.1
    • /
    • pp.171-177
    • /
    • 2008
  • In this paper we compared the performance of interpolation algorithms for Bayer patterned image sensors under the various illumination intensities. As the interpolation algorithms, we used bilinear color interpolation and adaptive fuzzy color interpolation and our experimentation shows that performance of interpolation algorithms depend on the lighting conditions; in low intensity of illumination, bilinear color interpolation with median filter performs best, in high intensity of illumination, adaptive fuzzy color interpolation performs best, and in between bilinear color interpolation performs best. This study suggested an interpolation scheme which applies different interpolation algorithm according to the intensity of the input image, resuting in the better image quality.

  • PDF

A motion-adaptive de-interlacing method using an efficient spatial and temporal interpolation (효율적인 시공간 보간을 통한 움직임 기반의 디인터레이싱 기법)

  • Lee, Seong-Gyu;Lee, Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.556-566
    • /
    • 2001
  • This paper proposes a motion-adaptive de-interlacing algorithm based on EBMF(Edge Based Median Filter) and AMPDF(Adaptive Minimum Pixel Difference Fillet). To compensate 'motion missing'error, which is an important factor in motion-adaptive methods, we used AMPDF which estimates an accurate value using different thresholds after classifying the input image to 4 classes. To efficiently interpolate the moving diagonal edge, we also used EBMF which selects a candidate pixel according to the edge information. Finally, we, to increase the performance, adopted an adaptive interpolation after classifying the input image to moving region, stationary region, and boundary region. Simulation results showed that the proposed method provides better performance than the existing methods.

  • PDF

Macroblock-based Adaptive Interpolation Filter Method Using New Filter Selection Criterion in H.264/AVC (H.264/AVC에서 새로운 필터 선택 기준을 이용한 매크로 블록 기반 적응 보간 필터 방법)

  • Yoon, Kun-Su;Moon, Yong-Ho;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.312-320
    • /
    • 2008
  • The macroblock-based adaptive interpolation filter method has been considered to be able to achieve high coding efficiency in H.264/AVC. In this method, although the filter selection criterion considered in terms of rate and distortion have showed a good performance, it still leaves room for improvement. To improve high coding efficiency better than conventional method, we propose a new filter selection criterion which considers two bit rates, motion vector and prediction error, and reconstruction error. In addition, the algorithm for reducing the overhead of transmitting the selected filter information is presented. Experimental results show that the proposed method significantly improves the coding efficiency compared to ones using conventional criterion. It leads to about a 5.19% (1 reference frame) and 5.14% (5 reference frames) bit rate savings on average compared to H.264/AVC, respectively.