• Title/Summary/Keyword: Adaptive Interpolation

Search Result 223, Processing Time 0.028 seconds

Nonuniform Delayless Subband Filter Structure with Tree-Structured Filter Bank (트리구조의 비균일한 대역폭을 갖는 Delayless 서브밴드 필터 구조)

  • 최창권;조병모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2001
  • Adaptive digital filters with long impulse response such as acoustic echo canceller and active noise controller suffer from slow convergence and computational burden. Subband techniques and multirate signal processing have been recently developed to improve the problem of computational complexity and slow convergence in conventional adaptive filter. Any FIR transfer function can be realized as a serial connection of interpolators followed by subfilters with a sparse impulse response. In this case, each interpolator which is related to the column vector of Hadamard matrix has band-pass magnitude response characteristics shifted uniformly. Subband technique using Hadamard transform and decimation of subband signal to reduce sampling rate are adapted to system modeling and acoustic noise cancellation In this paper, delayless subband structure with nonuniform bandwidth has been proposed to improve the performance of the convergence speed without aliasing due to decimation, where input signal is split into subband one using tree-structured filter bank, and the subband signal is decimated by a decimator to reduce the sampling rate in each channel, then subfilter with sparse impulse response is transformed to full band adaptive filter coefficient using Hadamard transform. It is shown by computer simulations that the proposed method can be adapted to general adaptive filtering.

  • PDF

Extraction of the control data for the shoe laster by using tension spline method and verification of the geometric grading system (Tension spline 방법을 이용한 제화용 라스팅기의 제어데이터 추출 및 기하할출제도의 검증)

  • Jang, Kwang-Keol;Kim, Seung-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.140-145
    • /
    • 2001
  • Lasting machines for shoe manufacturing are continuously developed with the aid of automation and Computer Aided Manufacturing (CAM). Adaptive lasting machine and CAD data of a shoe last are inevitably introduced for the labor-free manufacturing process. Recently, method for the CAD datarization of a shoe last is suggested using finite element mesh system. Initial set up data and control data of machine parts are required for the adaptive lasting machine. For the efficient process, grading of those data is essential to minimize data storage and production costs. In this paper, bonding lines are extracted from the CAD data of a shoe last and graded by the geometric grading system. Tension spline method is adopted for the interpolation of last CAD data. The results are compared with the results from the arithmetic grading system that is widely adopted in the shoemaking companies.

  • PDF

Adaptive Motion Vector Estimation Using the Regional Feature (영역별 특성을 이용한 적응적 움직임 벡터 추정 기법)

  • Park, Tae-Hee;Lee, Dong-Wook;Kim, Jae-Min;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.502-504
    • /
    • 1995
  • In video image compression, it is important to extract the exact notion information from image sequence in order to perform the data compression, the field rate conversion, and the motion compensated interpolation effectively. It is well known that the location of the smallest sum of absolute difference(SAD) does not always give the true motion vector(MV) since the MV obtained via full block search is often corrupted by noise. In this paper, we first classifies the input blocks into 3 categories : the background, the shade-motion, and the edge-motion. According to the characteristics of the classified blocks, multiple locations of relatively small SAD are searched with an adaptive search window by using the proposed method. The proposed method picks MVs among those candidates by using temporal correlation. Since temporal correlation reveals the noise level in a particular region of the video image sequence, we are able to reduce the search are very effectively.

  • PDF

Design and Implementation of Error Concealment Algorithm using Data Hiding and Adaptive Selection of Adjacent Motion Vectors (정보숨김과 주변 움직임 벡터의 적응적 선택에 의한 에러은닉 알고리즘의 설계 및 구현)

  • Lee, Hyun-Woo;Seong, Dong-Su;Lee, Keon-Bae
    • The KIPS Transactions:PartB
    • /
    • v.13B no.6 s.109
    • /
    • pp.607-614
    • /
    • 2006
  • In this paper, we propose an error resilience video coder which uses a hybrid error concealment algorithm. Firstly, the algorithm uses the error concealment with data hiding. If the hiding information is lost, the motion vector of lost macroblock is computed with adaptive selection of adjacent motion vectors and OBMC (Overlapped Block Motion Compensation) is applied with this motion vector. We know our algorithm is more effective in case of continuous GOB. The results show more significant improvement than many temporal concealment methods such as MVRI (Motion Vector Rational Interpolation) or existing error concealment using data hiding.

Weighted Edge Adaptive POCS Demosaicking Algorithm (Edge 가중치를 이용한 적응적인 POCS Demosaicking 알고리즘)

  • Park, Jong-Soo;Lee, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.46-54
    • /
    • 2008
  • Most commercial CCD/CMOS image sensors have CFA(Color Filter Array) where each pixel gathers light of a selective color to reduce the sensor size and cost. There are many algorithms proposed to reconstruct the original clolr image by adopting pettern recognition of regularization methods to name a few. However the resulting image still suffer from errors such as flase color, zipper effect. In this paper we propose an adaptive edge weight demosaicking algorithm that is based on POCS(Projection Onto Convex Sets) not only to improve the entire image's PSNR but also to reduce the edge region's errors that affect subjective image quality. As a result, the proposed algorithm reconstruct better quality images especially at the edge region.

Performance analysis of adaptive turbo coded modulation over mobile communication channel (이동통신 채널에서 적응터보부호화 변조방식의 성능분석)

  • Kim, Yeon-Su;Lee, Sang-Hoon;Joo, Eon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.69-78
    • /
    • 2006
  • High spectral efficiency can be obtained by adaptive modulation in which the modulation scheme is changed according to the channel environment. Thus it is especially suitable to mobile channel which is a typical example of time-varying channel. It is required to determine the optimum thresholds of signal-to-noise ratio(SNR) to change the modulation scheme effectively according to mobile speeds. Thus the optimum thresholds for specific mobile speeds to get the required bit error rate(BER) of $10^{-6}$ are obtained with the powerful turbo code in this paper. In addition, the optimum thresholds for the continuous mobile speed are proposed by interpolation of the obtained results. And the error performance and average spectral efficiency are investigated at various mobile speeds and channel environments.

A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구)

  • Park Il-Ryong;Chun Ho-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.105-110
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF

Automatic Generation of the Input Data for Rapid Prototyping from Unorganized Point Cloud Data (임의의 점 군 데이터로부터 쾌속조형을 위한 입력데이터의 자동생성)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.144-153
    • /
    • 2007
  • In order to generate the input data for rapid prototyping, a new approach which is based on the implicit surface interpolation method is presented. In the method a surface is reconstructed by creating smooth implicit surface from unorganized cloud of points through which the surface should pass. In the method an implicit surface is defined by the adaptive local shape functions including quadratic polynomial function, cubic polynomial function and RBF(Radial Basis Function). By the reconstruction of a surface, various types of error in raw STL file including degenerated triangles, undesirable holes with complex shapes and overlaps between triangles can be eliminated automatically. In order to get the slicing data for rapid prototyping an efficient intersection algorithm between implicit surface and plane is developed. For the direct usage for rapid prototyping, a robust transformation algorithm for the generation of complete STL data of solid type is also suggested.

Smart Control System Using Fuzzy and Neural Network Prediction System

  • Kim, Tae Yeun;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.105-115
    • /
    • 2019
  • In this paper, a prediction system is proposed to control the brightness of smart street lamps by predicting the moving path through the reduction of consumption power and information of pedestrian's past moving direction while meeting the function of existing smart street lamps. The brightness of smart street lamps is adjusted by utilizing the walk tracking vector and soft hand-off characteristics obtained through the motion sensing sensor of smart street lamps. In addition, the motion vector is used to analyze and predict the pedestrian path, and the GPU is used for high-speed computation. Pedestrians were detected using adaptive Gaussian mixing, weighted difference imaging, and motion vectors, and motions of pedestrians were analyzed using the extracted motion vectors. The preprocessing process using linear interpolation is performed to improve the performance of the proposed prediction system. Fuzzy prediction system and neural network prediction system are designed in parallel to improve efficiency and rough set is used for error correction.

A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구)

  • Park I. R.;Chun H. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF