• Title/Summary/Keyword: Adaptive Interpolation

Search Result 223, Processing Time 0.03 seconds

An Efficient Error Concealment Algorithm using Adaptive Selection of Adjacent Motion Vectors (주변 움직임 벡터의 적응적 선택을 이용한 효율적인 에러은닉 알고리즘)

  • Lee Hyun-Woo;Seong Dong-Su
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.661-666
    • /
    • 2004
  • In the wireless communication systems, transmission errors degrade the reconstructed image quality severely. Error concealment in video communication is becoming increasingly important because transmission errors can cause single or multiple loss of macroblocks in video delivery over unreliable channels such as wireless networks and internet. Among various techniques which can reduce the degradation of video quality, the error concealment techniques yield good performance without overheads and the modification of the encoder. In this paper, lost image blocks can be concealed with the OBMC(Overlapped Block Motion Compensation) after new motion vectors of the lost image blocks are allocated by median values using the adaptive selection with motion vectors of adjacent blocks. We know our algorithm is more effective in case of continuous GOB loss. The results show a significant improvement over the zero motion error concealment and other temporal concealment methods such as Motion Vector Rational Interpolation or Median+OBMC by 3dB gain in PSNR.

Fast Object Detection with DPM using Adaptive Bilinear Interpolated Image Pyramid (적응적 쌍선형 보간 이미지 피라미드를 이용한 DPM 기반 고속 객체 인식 기법)

  • Han, Gyu-Dong;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.362-373
    • /
    • 2020
  • Recently, as autonomous vehicles and intelligent CCTV are growing more interest, the efficient object detection is essential technique. The DPM(Deformable Part Models) which is basis of this paper have used a typical object system that represents highly variable objects using mixtures of deformable part for object. Although it shows high detection performance by capturing part shape and configuration of object model, but it is limited to use in real application due to the complicated algorithm. In this paper, instead of image feature pyramid that takes up a large amount of computation in one part of the detector, we propose a method to reduce the computation speed by reconstructing a new image feature pyramid that uses adaptive bilinear interpolation of feature maps obtained on a specific image scale. As a result, the detection performance for object was lowered a little by 2.82%, however, the proposed detection method improved the speed performance by 10% in comparison with original DPM.

Iris Image Enhancement for the Recognition of Non-ideal Iris Images

  • Sajjad, Mazhar;Ahn, Chang-Won;Jung, Jin-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1904-1926
    • /
    • 2016
  • Iris recognition for biometric personnel identification has gained much interest owing to the increasing concern with security today. The image quality plays a major role in the performance of iris recognition systems. When capturing an iris image under uncontrolled conditions and dealing with non-cooperative people, the chance of getting non-ideal images is very high owing to poor focus, off-angle, noise, motion blur, occlusion of eyelashes and eyelids, and wearing glasses. In order to improve the accuracy of iris recognition while dealing with non-ideal iris images, we propose a novel algorithm that improves the quality of degraded iris images. First, the iris image is localized properly to obtain accurate iris boundary detection, and then the iris image is normalized to obtain a fixed size. Second, the valid region (iris region) is extracted from the segmented iris image to obtain only the iris region. Third, to get a well-distributed texture image, bilinear interpolation is used on the segmented valid iris gray image. Using contrast-limited adaptive histogram equalization (CLAHE) enhances the low contrast of the resulting interpolated image. The results of CLAHE are further improved by stretching the maximum and minimum values to 0-255 by using histogram-stretching technique. The gray texture information is extracted by 1D Gabor filters while the Hamming distance technique is chosen as a metric for recognition. The NICE-II training dataset taken from UBRIS.v2 was used for the experiment. Results of the proposed method outperformed other methods in terms of equal error rate (EER).

The study of sound source synthesis IC to realize the virtual engine sound of a car powered by electricity without an engine (엔진 없이 전기로 구동되는 자동차의 가상 엔진 음 구현을 위한 음원합성 IC에 관한 연구)

  • Koo, Jae-Eul;Hong, Jae-Gyu;Song, Young-Woog;Lee, Gi-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.571-577
    • /
    • 2021
  • This study is a study on System On Chip (SOC) that implements virtual engine sound in electric vehicles without engines, and realizes vivid engine sound by combining Adaptive Difference PCM (ADPCM) method and frequency modulation method for satisfaction of driver's needs and safety of pedestrians. In addition, by proposing an electronic sound synthesis algorithm applying Musical Instrument Didital Interface (MIDI), an engine sound synthesis method and a constitutive model of an engine sound generation system are presented. In order to satisfy both drivers and pedestrians, this study uses Controller Area Network (CAN) communication to receive information such as Revolution Per Minute (RPM), vehicle speed, accelerator pedal depressed amount, torque, etc., transmitted according to the driver's driving habits, and then modulates the frequency according to the appropriate preset parameters We implemented an interaction algorithm that accurately reflects the intention of the system and driver by using interpolation for the system, ADPCM algorithm for reducing the amount of information, and MIDI format information for making engine sound easier.

A Method For Improvement Of Split Vector Quantization Of The ISF Parameters Using Adaptive Extended Codebook (적응적인 확장된 코드북을 이용한 분할 벡터 양자화기 구조의 ISF 양자화기 개선)

  • Lim, Jong-Ha;Jeong, Gyu-Hyeok;Hong, Gi-Bong;Lee, In-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • This paper presents a method for improving the performance of ISF coefficients quantizer through compensating the defect of the split structure vector quantization using the ordering property of ISF coefficients. And design the ISF coefficients quantizer for wideband speech codec using proposed method. The wideband speech codec uses split structure vector quantizer which could not use the correlation between ISF coefficients fully to reduce complexity and the size of codebook. The proposed algorithm uses the ordering property of ISF coefficients to overcome the defect. Using the ordering property, the codebook redundancy could be figured out. The codebook redundancy is replaced by the adaptive-extended codebook to improve the performance of the quantizer through using the ordering property, ISF coefficient prediction and interpolation of existing codebook. As a result, the proposed algorithm shows that the adaptive-extended codebook algorithm could get about 2 bit gains in comparison with the existing split structure ISF quantizer of AMR-WB (G.722.2) in the points of spectral distortion.

Performance Analysis and improvement of Extension-interpolation (EI)/2D-DCT for Coding irregular Shaped object (불규칙 모양 물제의 부호화를 위한 확장-보간/2D-DCT의 성능 분석 및 개성 방안)

  • 조순제;강현수;윤병주;김성대;구본호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3B
    • /
    • pp.541-548
    • /
    • 2000
  • In the MPEG-4 standardization phase, many methods for coding the irregular shaped VOP (video object Plane) have been researched. Texture coding is one of interesting research items in the MPEG-4. There are the Low pass extrapolation (LPE) padding, the shape adaptive DCT (SA-DCT), and the Extension-Interpolation (EI)/2D-DCT proposed in [1] as texture coding methods. the EI/2D-DCT is the method extending and interpolating luminance values from and Arbitrarily Shaped (AS) image segment into an 8 x 8 block and transforming the extended and interpolated luminance values by the 8x8 DCT. although the EI/2D-DCT and the SA-DCT work well in coding the As image segments. they are degraded since they use one-dimensional (1-D) methods such as the 1D-EI and the 1D-DCT in the two-dimensional (2-D) space. in this paper, we analyze the performance of the EI/2D-DCTand propose a new non-symmetric sig-sag scanning method, which non-symmetrically scans the quantized coefficients in the DCT domain to improve the EI/2D-DCT.

  • PDF

Performance Evaluation of Channel Estimation Algorithm for Pilot Symbol-Assisted IMT-2000 System over Multipath Rayleigh Fading Channel (다중경로 레일레이 페이딩 채널에서 파일럿 심볼 구조의 IMT-2000 시스템의 채널추정 알고리즘 성능평가)

  • 구제길;최형진
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1128-1138
    • /
    • 2000
  • This paper presents two different approaches for channel estimation of IMT-2000 pilot symbol-assisted W-CDMA reverse link over Rayleigh fading channels of one and two paths. By obtaining BER performance through computer simulations, the proposed algorithms of 2-point second-order interpolation and IDD BWMA are compared with the performance of existing interpolation and adaptive algorithms. The BER performance of the proposed algorithms is superior to WMSA, linear and second-order Gaussian interpolation, LMS, and RLS algorithm in fast fading channels. In particular, the BER performance of the IDD BWMA algorithm is nearly insensitive for Doppler frequency within simulation range $E_b/N_0$ = 28 dB. The two proposed algorithms also have relatively simple structure and similar processing delay in comparison to the existing algorithms. Therefore, these algorithms are more suitable for high-speed mobile communication environments.

  • PDF

Multi-Mode Reconstruction of Subsampled Chrominance Information using Inter-Component Correlation in YCbCr Colorspace (YCbCr 컬러공간에서 구성성분간의 상관관계를 이용한 축소된 채도 정보의 다중 모드 재구성)

  • Kim, Young-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.74-82
    • /
    • 2008
  • This paper investigates chrominance reconstruction methods that reconstruct subsampled chrominance information efficiently using the correlation between luminance and chrominance components in the decompression process of compressed images, and analyzes drawbacks involved in the adaptive-weighted 2-dimensional linear interpolation among the methods, which shows higher efficiency in the view of computational complexity than other methods. To improve the drawback that the spatial frequency distribution is not considered for the decompressed image and to support the application on a low-performance system in behalf of 2-dimensional linear interpolation, this paper proposes the multi-mode reconstruction method which uses three reconstruction methods having different computational complexity from each other according to the degree of edge response of luminance component. The performance evaluation on a development platform for embedded systems showed that the proposed reconstruction method supports the similar level of image quality for decompressed images while reducing the overall computation time for chrominance reconstruction in comparison with the 2-dimensional linear interpolation.

Adaptive Intra Prediction Method using Modified Cubic-function and DCT-IF (변형된 3차 함수와 DCT-IF를 이용한 적응적 화면내 예측 방법)

  • Lee, Han-Sik;Lee, Ju-Ock;Moon, Joo-Hee
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.756-764
    • /
    • 2012
  • In current HEVC, prediction pixels are finally calculated by linear-function interpolation on two reference pixels. It is hard to expect good performance on the case of occurring large difference between two reference pixels. This paper decides more accurate prediction pixel values than current HEVC using linear function. While existing prediction process only uses two reference pixels, proposed method uses DCT-IF. DCT-IF analyses frequency characteristics of more than two reference pixels in frequency domain. And proposed method calculates prediction value adaptively by using linear-function, DCT-IF and cubic-function to decide more accurate interpolation value than to only use linear function. Cubic-function has a steep slope than linear-function. So, using cubic-function is utilized on edge in prediction unit. The complexity of encoder and decoder in HM6.0 has increased 3% and 1%, respectively. BD-rate has decreased 0.4% in luma signal Y, 0.3% in chroma signal U and 0.3% in chroma signal V in average. Through this experiment, proposed adaptive intra prediction method using DCT-IF and cubic-function shows increased performance than HM6.0.

Fuzzy-based adaptive controller for nonlinear systems (비선형 시스템을 위한 퍼지 기반 적응 제어기)

  • Lee, Yun-Hyung;Yun, Hak-Chin;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.710-715
    • /
    • 2014
  • This paper investigates the design scheme of fuzzy-based adaptive controller to give adaptability for controlling nonlinear systems. For this, a nonlinear system is linearized by the several subsystems depending on the operating point or parameter changes. Then, the sub-controller is designed by linear control scheme for each subsystem and the sub-controllers are fused with each gain of sub-controllers using fuzzy rules. The proposed method is applied to an inverted pole system which has structurally instability and nonlinearity, and simulation works are shown to illustrate the effectiveness by comparison with the interpolation-based adaptive Controller.