• Title/Summary/Keyword: Adaptive Image Processing

Search Result 454, Processing Time 0.029 seconds

High Noise Density Median Filter Method for Denoising Cancer Images Using Image Processing Techniques

  • Priyadharsini.M, Suriya;Sathiaseelan, J.G.R
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.308-318
    • /
    • 2022
  • Noise is a serious issue. While sending images via electronic communication, Impulse noise, which is created by unsteady voltage, is one of the most common noises in digital communication. During the acquisition process, pictures were collected. It is possible to obtain accurate diagnosis images by removing these noises without affecting the edges and tiny features. The New Average High Noise Density Median Filter. (HNDMF) was proposed in this paper, and it operates in two steps for each pixel. Filter can decide whether the test pixels is degraded by SPN. In the first stage, a detector identifies corrupted pixels, in the second stage, an algorithm replaced by noise free processed pixel, the New average suggested Filter produced for this window. The paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. In this paper the comparison of known image denoising is discussed and a new decision based weighted median filter used to remove impulse noise. Using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structure Similarity Index Method (SSIM) metrics, the paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. A detailed simulation process is performed to ensure the betterment of the presented model on the Mini-MIAS dataset. The obtained experimental values stated that the HNDMF model has reached to a better performance with the maximum picture quality. images affected by various amounts of pretend salt and paper noise, as well as speckle noise, are calculated and provided as experimental results. According to quality metrics, the HNDMF Method produces a superior result than the existing filter method. Accurately detect and replace salt and pepper noise pixel values with mean and median value in images. The proposed method is to improve the median filter with a significant change.

Block Adaptive Binarization of Business Card Images Acquired in PDA Using a Modified Quadratic filter (변형된 Quadratic 필터를 이용한 PDA로 획득한 명함 영상의 블록 적응 이진화)

  • 신기택;장익훈;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.801-814
    • /
    • 2004
  • In this paper, we propose a block adaptive binarization (BAB) using a modified quadratic filter (MQF) to binarize business card images acquired by personal digital assistant (PDA) cameras effectively. In the proposed method, a business card image is first partitioned into blocks of 8${\times}$8 and the blocks are then classified into character Hocks (CBs) and background blocks (BBs). Each classified CB is windowed with a 24${\times}$24 rectangular window centering around the CB and the windowed blocks are improved by the pre-processing filter MQF, in which the scheme of threshold selection in QF is modified. The 8${\times}$8 center block of the improved block is barbarized with the threshold selected in the MQF. A binary image is obtained tiling each binarized block in its original position. Experimental results show that the MQF and the BAB have much better effects on the performance of binarization compared to the QF and the global binarization (GB), respectively, for the test business card images acquired in a PDA. Also the proposed BAB using MQF gives binary images of much better quality, in which the characters appear much better clearly, over the conventional GB using QF. In addition, the binary images by the proposed BAB using MQF yields about 87.7% of character recognition rate so that about 32.0% performance improvement over those by the GB using QF yielding about 55.7% of character recognition rate using a commercial character recognition software.

Adaptive Vehicle License Plate Recognition System Using Projected Plane Convolution and Decision Tree Classifier (투영면 컨벌루션과 결정트리를 이용한 상태 적응적 차량번호판 인식 시스템)

  • Lee Eung-Joo;Lee Su Hyun;Kim Sung-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1496-1509
    • /
    • 2005
  • In this paper, an adaptive license plate recognition system which detects and recognizes license plate at real-time by using projected plane convolution and Decision Tree Classifier is proposed. And it was tested in circumstances which presence of complex background. Generally, in expressway tollgate or gateway of parking lots, it is very difficult to detect and segment license plate because of size, entry angle and noisy problem of vehicles due to CCD camera and road environment. In the proposed algorithm, we suggested to extract license plate candidate region after going through image acquisition process with inputted real-time image, and then to compensate license size as well as gradient of vehicle with change of vehicle entry position. The proposed algorithm can exactly detect license plate using accumulated edge, projected convolution and chain code labeling method. And it also segments letter of license plate using adaptive binary method. And then, it recognizes license plate letter by applying hybrid pattern vector method. Experimental results show that the proposed algorithm can recognize the front and rear direction license plate at real-time in the presence of complex background environments. Accordingly license plate detection rate displayed $98.8\%$ and $96.5\%$ successive rate respectively. And also, from the segmented letters, it shows $97.3\%$ and $96\%$ successive recognition rate respectively.

  • PDF

A Method for Improving Vein Recognition Performance by Illumination Normalization (조명 정규화를 통한 정맥인식 성능 향상 기법)

  • Lee, Eui Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.423-430
    • /
    • 2013
  • Recently, the personal identification technologies using vein pattern of back of the hand, palm, and finger have been developed actively because it has the advantage that the vein blood vessel in the body is impossible to damage, make a replication and forge. However, it is difficult to extract clearly the vein region from captured vein images through common image prcessing based region segmentation method, because of the light scattering and non-uniform internal tissue by skin layer and inside layer skeleton, etc. Especially, it takes a long time for processing time and makes a discontinuity of blood vessel just in a image because it has non-uniform illumination due to use a locally different adaptive threshold for the binarization of acquired finger-vein image. To solve this problem, we propose illumination normalization based fast method for extracting the finger-vein region. The proposed method has advantages compared to the previous methods as follows. Firstly, for remove a non-uniform illumination of the captured vein image, we obtain a illumination component of the captured vein image by using a low-pass filter. Secondly, by extracting the finger-vein path using one time binarization of a single threshold selection, we were able to reduce the processing time. Through experimental results, we confirmed that the accuracy of extracting the finger-vein region was increased and the processing time was shortened than prior methods.

Reduction of Radiographic Quantum Noise Using Adaptive Weighted Median Filter (적응성 가중메디안 필터를 이용한 방사선 투과영상의 양자 잡음 제거)

  • Lee, Hoo-Min;Nam, Moon-Hyon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.465-473
    • /
    • 2002
  • Images are easily corrupted by noise during the data transmission, data capture and data processing. A technical method of noise analyzing and adaptive filtering for reducing of quantum noise in radiography is presented. By adjusting the characteristics of the filter according to local statistics around each pixel of the image as moving windowing, it is possible to suppress noise sufficiently while preserve edge and other significant information required in reading. We have proposed adaptive weighted median(AWM) filters based on local statistics. We show two ways of realizing the AWM filters. One is a simple type of AWM filter, whose weights are given by a simple non-linear function of three local characteristics. The other is the AWM filter which is constructed by homogeneous factor(HF). Homogeneous factor(HF) from the quantum noise models that enables the filter to recognize the local structures of the image is introduced, and an algorithm for determining the HF fitted to the detection systems with various inner statistical properties is proposed. We show by the experimented that the performances of proposed method is superior to these of other filters and models in preserving small details and suppressing the noise at homogeneous region. The proposed algorithms were implemented by visual C++ language on a IBM-PC Pentium 550 for testing purposes, the effects and results of the noise filtering were proposed by comparing with images of the other existing filtering methods.

Fractal Image Compression Using Adaptive Selection of Block Approximation Formula (블록 근사화식의 적응적 선택을 이용한 프랙탈 영상 부호화)

  • Park, Yong-Ki;Park, Chul-Woo;Kim, Doo-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3185-3199
    • /
    • 1997
  • This paper suggests techniques to reduce coding time which is a problem in traditional fractal compression and to improve fidelity of reconstructed images by determining fractal coefficient through adaptive selection of block approximation formula. First, to reduce coding time, we construct a linear list of domain blocks of which characteristics is given by their luminance and variance and then we control block searching time according to the first permissible threshold value. Next, when employing three-level block partition, if a range block of minimum partition level cannot find a domain block which has a satisfying approximation error, we choose new approximation coefficients using a non-linear approximation of luminance term. This boosts the fidelity. Our experiment employing the above methods shows enhancement in the coding time more than two times over traditional coding methods and shows improvement in PSNR value by about 1-3dB at the same com- pression rate.

  • PDF

Adaptive Data Mining Model using Fuzzy Performance Measures (퍼지 성능 측정자를 이용한 적응 데이터 마이닝 모델)

  • Rhee, Hyun-Sook
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.541-546
    • /
    • 2006
  • Data Mining is the process of finding hidden patterns inside a large data set. Cluster analysis has been used as a popular technique for data mining. It is a fundamental process of data analysis and it has been Playing an important role in solving many problems in pattern recognition and image processing. If fuzzy cluster analysis is to make a significant contribution to engineering applications, much more attention must be paid to fundamental decision on the number of clusters in data. It is related to cluster validity problem which is how well it has identified the structure that Is present in the data. In this paper, we design an adaptive data mining model using fuzzy performance measures. It discovers clusters through an unsupervised neural network model based on a fuzzy objective function and evaluates clustering results by a fuzzy performance measure. We also present the experimental results on newsgroup data. They show that the proposed model can be used as a document classifier.

Wavelet-Based Digital Watermarking Using Level-Adaptive Thresholding (레벨 적응적 이치화를 이용한 웨이블릿 기반의 디지털 워터마킹)

  • Kim, Jong-Ryul;Mun, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • In this paper, a new digital watermarking algorithm using wavelet transform is proposed. Wavelet transform is widely used for image processing, because of its multiresolution characteristic which conforms to the principles of the human visual system(HVS). It is also very efficient for localizing images in the spatial and frequency domain. Since wavelet coefficients can be characterized by the gaussian distribution, the proposed algorithm uses a gaussian distributed random vector as the watermark in order to achieve invisibility and robustness. After the original image is transformed using DWT(Discrete Wavelet Transform), the coefficients of all subbands including LL subband are utilized to equally embed the watermark to the whole image. To select perceptually significant coefficients for each subband, we use level-adaptive thresholding. The watermark is embedded to the selected coeffocoents, using different scale factors according to the wavelet characteristics. In the process of watermark detection, the similarity between the original watermark and the extracted watermark is calculated by using vector projection method. We analyze the performance of the proposed algorithm, compared with other transform-domain watermarking methods. The experimental results tested on various images show that the proposed watermark is less visible to human eyes and more robust to image compressions, image processings, geometric transformations and various noises, than the existing methods.

  • PDF

A Prioritized Transmission Scheme for Three-Dimensional Integral Imaging (3차원 집적 영상을 위한 우선순위 전송 기법)

  • Cho, Myungjin;Choi, Hyun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.5
    • /
    • pp.447-455
    • /
    • 2014
  • In this paper, we consider a representative integral imaging method in glasses-free 3D image processing and propose a prioritized transmission scheme for guaranteeing a received video quality in error-prone environments. According to the correlation of pixels consisting of each voxel of integral image, we set the priority differently and apply the modulation level according to this priority value. That is to say, the corresponding pixels with small variance are set to a high priority and transmitted by using a low level modulation that is robust under transmission errors, but the corresponding pixels with greater variance are set to a lower priority and transmitted by using a high level modulation that has a high bit error rate but fast transmission rate. Result shows that the proposed scheme that applies the error-robust modulation level to the important image bit stream with the high priority improves the peak to sidelobe ratio (PSR) of the received 3D image, compared with a typical method that use the same modulation level without distinction of priorities.

Adaptive Thresholding Method Using Zone Searching Based on Representative Points for Improving the Performance of LCD Defect Detection (LCD 결함 검출 성능 개선을 위한 대표점 기반의 영역 탐색을 이용한 적응적 이진화 기법)

  • Kim, Jin-Uk;Ko, Yun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.689-699
    • /
    • 2016
  • As the demand for LCD increases, the importance of inspection equipment for improving the efficiency of LCD production is continuously emphasized. The pattern inspection apparatus is one that detects minute defects of pattern quickly using optical equipment such as line scan camera. This pattern inspection apparatus makes a decision on whether a pixel is a defect or not using a single threshold value in order to meet constraint of real time inspection. However, a method that uses an adaptive thresholding scheme with different threshold values according to characteristics of each region in a pattern can greatly improve the performance of defect detection. To apply this adaptive thresholding scheme it has to be known that a certain pixel to be inspected belongs to which region. Therefore, this paper proposes a region matching algorithm that recognizes the region of each pixel to be inspected. The proposed algorithm is based on the pattern matching scheme with the consideration of real time constraint of machine vision and implemented through GPGPU in order to be applied to a practical system. Simulation results show that the proposed method not only satisfies the requirement for processing time of practical system but also improves the performance of defect detection.