• Title/Summary/Keyword: Adaptive Gaussian Method

Search Result 156, Processing Time 0.034 seconds

Adaptive Counting Line Detection for Traffic Analysis in CCTV Videos (CCTV영상 내 교통량 분석을 위한 적응적 계수선 검출 방법)

  • Jung, Hyeonseok;Lim, Seokjae;Lee, Ryong;Park, Minwoo;Lee, Sang-Hwan;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2020
  • Recently, with the rapid development of image recognition technology, the demand for object analysis in road CCTV videos is increasing. In this paper, we propose a method that can adaptively find the counting line for traffic analysis in road CCTV videos. First, vehicles on the road are detected, and the corresponding positions of the detected vehicles are modeled as the two-dimensional pointwise Gaussian map. The paths of vehicles are estimated by accumulating pointwise Gaussian maps on successive video frames. Then, we apply clustering and linear regression to the accumulated Gaussian map to find the principal direction of the road, which is highly relevant to the counting line. Experimental results show that the proposed method for detecting the counting line is effective in various situations.

Active Object Tracking based on stepwise application of Region and Color Information (지역정보와 색 정보의 단계적 적용에 의한 능동 객체 추적)

  • Jeong, Joon-Yong;Lee, Kyu-Won
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.107-112
    • /
    • 2012
  • An active object tracking algorithm using Pan and Tilt camera based in the stepwise application of region and color information from realtime image sequences is proposed. To reduce environment noises in input sequences, Gaussian filtering is performed first. An image is divided into background and objects by using the adaptive Gaussian mixture model. Once the target object is detected, an initial search window close to an object region is set up and color information is extracted from the region. We track moving objects in realtime by using the CAMShift algorithm which enables to trace objects in active camera with the color information. The proper tracking is accomplished by controlling the amount of pan and tilt to be placed the center position of object into the middle of field of view. The experimental results show that the proposed method is more effective than the hand-operated window method.

A Statistically Model-Based Adaptive Technique to Unsupervised Segmentation of MR Images (자기공명영상의 비지도 분할을 위한 통계적 모델기반 적응적 방법)

  • Kim, Tae-Woo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.286-295
    • /
    • 2000
  • We present a novel statistically adaptive method using the Minimum Description Length(MDL) principle for unsupervised segmentation of magnetic resonance(MR) images. In the method, Markov random filed(MRF) modeling of tissue region accounts for random noise. Intensity measurements on the local region defined by a window are modeled by a finite Gaussian mixture, which accounts for image inhomogeneities. The segmentation algorithm is based on an iterative conditional modes(ICM) algorithm, approximately finds maximum ${\alpha}$ posteriori(MAP) estimation, and estimates model parameters on the local region. The size of the window for parameter estimation and segmentation is estimated from the image using the MDL principle. In the experiments, the technique well reflected image characteristic of the local region and showed better results than conventional methods in segmentation of MR images with inhomogeneities, especially.

  • PDF

Livestock Theft Detection System Using Skeleton Feature and Color Similarity (골격 특징 및 색상 유사도를 이용한 가축 도난 감지 시스템)

  • Kim, Jun Hyoung;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.586-594
    • /
    • 2018
  • In this paper, we propose a livestock theft detection system through moving object classification and tracking method. To do this, first, we extract moving objects using GMM(Gaussian Mixture Model) and RGB background modeling method. Second, it utilizes a morphology technique to remove shadows and noise, and recognizes moving objects through labeling. Third, the recognized moving objects are classified into human and livestock using skeletal features and color similarity judgment. Fourth, for the classified moving objects, CAM (Continuously Adaptive Meanshift) Shift and Kalman Filter are used to perform tracking and overlapping judgment, and risk is judged to generate a notification. Finally, several experiments demonstrate the feasibility and applicability of the proposed method.

Beam structural system moving forces active vibration control using a combined innovative control approach

  • Lee, Ming-Hui
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.121-136
    • /
    • 2013
  • This study proposes an innovative control approach to suppress the responses of a beam structural system under moving forces. The proposed control algorithm is a synthesis of the adaptive input estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. Using the synthesis algorithm the moving forces can be estimated using AIEM while the LQG controller offers proper control forces to effectively suppress the beam structural system responses. Active control numerical simulations of the beam structural system are performed to evaluate the feasibility and effectiveness of the proposed control technique. The numerical simulation results show that the proposed method has more robust active control performance than the conventional LQG method.

Improved VFM Method for High Accuracy Flight Simulation (고정밀 비행 시뮬레이션을 위한 개선 VFM 기법 연구)

  • Lee, Chiho;Kim, Mukyeom;Lee, Jae-Lyun;Jeon, Kwon-Su;Tyan, Maxim;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.709-719
    • /
    • 2021
  • Recent progress in analysis and flight simulation methods enables wider use of a virtual certification and reduces number of certification flight tests. Aerodynamic database (AeroDB) is one of the most important components for the flight simulation. It is composed of aerodynamic coefficients at a range of flight conditions and control deflections. This paper proposes and efficient method for construction of AeroDB that combines Gaussian Process based Variable Fidelity Modeling with adaptive sampling algorithm. A case study of virtual certification of a F-16 fighter is presented. Four AeroDB were constructed using different number and distribution of high-fidelity data points. The constructed database is then used to simulate gliding, short pitch, and roll response. Compliance with certification regulations is then checked. The case study demonstrates that the proposed method can significantly reduce number of high-fidelity data points while maintaining high accuracy of the simulation.

A Study on Image Restoration for Removing Mixed Noise while Considering Edge Information (에지정보를 고려한 복합잡음 제거를 위한 영상복원에 관한 연구)

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2239-2246
    • /
    • 2011
  • In image signal processing, image signal is corrupted by various noises and caused the degradation phenomenon. And Images often corrupted by AWGN(additive white gaussian noise) and impulse noise which called mixed noise. In this paper, the algorithm is proposed to remove mixed noise while keeping edge information. The proposed algorithm first classifies the noise type, if the classify result is AWGN, then the mean of the output after using self-adaptive weighted mean filter and median value will be the outfiltering value. And if the noise type is impulse noise, then the noise is removed by a modified nonlinear filter. Also we compare existing methods through the simulation and using PSNR(peak signal to noise ratio) as the standard of judgement of improvement effect. The result of computer simulation on test images indicates that the proposed method is superior to traditional filtering algorithms.

Denoising of Infrared Images by an Adaptive Threshold Method in the Wavelet Transformed Domain (웨이브렛 변환 영역에서 적응문턱값을 이용한 적외선영상의 잡음제거)

  • Cho, Chang-Ho;Lee, Sang-Hyo;Lee, Jong-Yong;Cho, Do-Hyeon;Lee, Sang-Chuel
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.65-75
    • /
    • 2006
  • This thesis deals with a wavelet-based method of denoising of infrared images contaminated with impulse noise and Gaussian noise, he method of thresholding the wavelet coefficients using derivatives and median absolute deviations of the wavelet coefficients of the detail subbands was proposed to effectively denoise infrared images with noises. Particularly, in order to eliminate the impulse noise the method of generating binary masks indicating locations of the impulse noise was selected. By this method, the threshold values dividing edges and noises were obtained more effectively proving the validity of the denoising method compared with the conventional wavelet shrinkage method.

Nonlinear Anisotropic Diffusion Using Adaptive Weighted Median Filters (적응 가중 미디언 필터를 이용한 영상 확산 알고리즘)

  • Hwang, In-Ho;Lee, Kyung-Hoon;Kim, Woong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.542-549
    • /
    • 2007
  • Recently, many research activities in the image processing area are concentrated on developing new algorithms by finding the solution of the 'diffusion equation'. The diffusion algorithms are expected to be utilized in numerous applications including noise removal and image restoration, edge detection, segmentation, etc. In this paper, at first, it will be shown that the anisotropic diffusion algorithms have the similar structure with the adaptive FIR filters with cross-shaped 5-tap kernel, and this relatively small-sized kernel causes many iterating procedure for satisfactory filtering effects. Moreover, it will also be shown that lots of modifications which are adopted to the conventional Gaussian diffusion method in order to weaken the edge blurring nature of the linear filtering process increases another computational burden. We propose a new Median diffusion scheme by replacing the adaptive linear filters in the diffusion process with the AWM (Adaptive Weighted Median) filters. A diffusion-equation-based adaptation scheme is also proposed. With the proposed scheme, the size of the diffusion kernel can be increased, and thus diffusion speed greatly increases. Simulation results shows that the proposed Median diffusion scheme outperforms in noise removal (especially impulsive noise), and edge preservation.

Quantitative Assessment Technology of Small Animal Myocardial Infarction PET Image Using Gaussian Mixture Model (다중가우시안혼합모델을 이용한 소동물 심근경색 PET 영상의 정량적 평가 기술)

  • Woo, Sang-Keun;Lee, Yong-Jin;Lee, Won-Ho;Kim, Min-Hwan;Park, Ji-Ae;Kim, Jin-Su;Kim, Jong-Guk;Kang, Joo-Hyun;Ji, Young-Hoon;Choi, Chang-Woon;Lim, Sang-Moo;Kim, Kyeong-Min
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2011
  • Nuclear medicine images (SPECT, PET) were widely used tool for assessment of myocardial viability and perfusion. However it had difficult to define accurate myocardial infarct region. The purpose of this study was to investigate methodological approach for automatic measurement of rat myocardial infarct size using polar map with adaptive threshold. Rat myocardial infarction model was induced by ligation of the left circumflex artery. PET images were obtained after intravenous injection of 37 MBq $^{18}F$-FDG. After 60 min uptake, each animal was scanned for 20 min with ECG gating. PET data were reconstructed using ordered subset expectation maximization (OSEM) 2D. To automatically make the myocardial contour and generate polar map, we used QGS software (Cedars-Sinai Medical Center). The reference infarct size was defined by infarction area percentage of the total left myocardium using TTC staining. We used three threshold methods (predefined threshold, Otsu and Multi Gaussian mixture model; MGMM). Predefined threshold method was commonly used in other studies. We applied threshold value form 10% to 90% in step of 10%. Otsu algorithm calculated threshold with the maximum between class variance. MGMM method estimated the distribution of image intensity using multiple Gaussian mixture models (MGMM2, ${\cdots}$ MGMM5) and calculated adaptive threshold. The infarct size in polar map was calculated as the percentage of lower threshold area in polar map from the total polar map area. The measured infarct size using different threshold methods was evaluated by comparison with reference infarct size. The mean difference between with polar map defect size by predefined thresholds (20%, 30%, and 40%) and reference infarct size were $7.04{\pm}3.44%$, $3.87{\pm}2.09%$ and $2.15{\pm}2.07%$, respectively. Otsu verse reference infarct size was $3.56{\pm}4.16%$. MGMM methods verse reference infarct size was $2.29{\pm}1.94%$. The predefined threshold (30%) showed the smallest mean difference with reference infarct size. However, MGMM was more accurate than predefined threshold in under 10% reference infarct size case (MGMM: 0.006%, predefined threshold: 0.59%). In this study, we was to evaluate myocardial infarct size in polar map using multiple Gaussian mixture model. MGMM method was provide adaptive threshold in each subject and will be a useful for automatic measurement of infarct size.