• Title/Summary/Keyword: Adaptive Fuzzy Algorithm

Search Result 408, Processing Time 0.084 seconds

Image segmentation using adaptive MIN-MAX genetic clustering and fuzzy worm searching (자율 적응 최소-최대 유전 군집호와 퍼지 벌레 검색을 이용한 영상 영역화)

  • 하성욱;서석배;강대성
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.781-784
    • /
    • 1998
  • An image segmentation approach based on the fuzzy worm searching and MIN-MAx clusterng algorithm is proposed in this paper. This algorithm deals with fuzzy worm value and min-max node at a gross scene level, which investigates the edge information including fuzzy worm action. But current segmentation methods based edge extraction methods generally need the mask information for the algebraic model, and take long run times at mask operation, wheras the proposed algorithm has single operation ccording to active searching of fuzzy worms. In addition, we also genetic min-max clustering using genetic algorithm to complete clustering and fuzyz searching on grey-histogram of image for the optimum solution, which can automatically determine the size of rnages and has both strong robust and speedy calculation. The simulation results showed that the proposed algorithm adaptively divided the quantized images in histogram region and performed single searching methods, significantly alleviating the increase of the computational load and the memory requirements.

  • PDF

A Novel Algorithm for Fault Classification in Transmission Lines Using a Combined Adaptive Network and Fuzzy Inference System

  • Yeo, Sang-Min;Kim, Chun-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.191-197
    • /
    • 2003
  • Accurate detection and classification of faults on transmission lines is vitally important. In this respect, many different types of faults occur, such as inter alia low impedance faults (LIF) and high impedance faults (HIF). The latter in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if undetected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. Because of the randomness and asymmetric characteristics of HIFs, their modeling is difficult and numerous papers relating to various HIF models have been published. In this paper, the model of HIFs in transmission lines is accomplished using the characteristics of a ZnO arrester, which is then implemented within the overall transmission system model based on the electromagnetic transients program (EMTP). This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System (ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square (RMS) values of 3-phase currents and zero sequence current. The performance of the proposed algorithm is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results demonstrate that the ANFIS can detect and classify faults including LIFs and HIFs accurately within half a cycle.

Maximum Torque Control of an IPMSM Drive Using an Adaptive Learning Fuzzy-Neural Network

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.468-476
    • /
    • 2012
  • The interior permanent magnet synchronous motor (IPMSM) has been widely used in electric vehicle applications due to its excellent power to weigh ratio. This paper proposes the maximum torque control of an IPMSM drive using an adaptive learning (AL) fuzzy neural network (FNN) and an artificial neural network (ANN). This control method is applicable over the entire speed range while taking into consideration the limits of the inverter's rated current and voltage. This maximum torque control is an executed control through an optimal d-axis current that is calculated according to the operating conditions. This paper proposes a novel technique for the high performance speed control of an IPMSM using AL-FNN and ANN. The AL-FNN is a control algorithm that is a combination of adaptive control and a FNN. This control algorithm has a powerful numerical processing capability and a high adaptability. In addition, this paper proposes the speed control of an IPMSM using an AL-FNN, the estimation of speed using an ANN and a maximum torque control using the optimal d-axis current according to the operating conditions. The proposed control algorithm is applied to an IPMSM drive system. This paper demonstrates the validity of the proposed algorithms through result analysis based on experiments under various operating conditions.

Multi-Channel Active Noise Control System Designs using Fuzzy Logic Stabilized Algorithms (퍼지논리 안정화알고리즘을 이용한 다중채널 능동소음제어시스템)

  • Ahn, Dong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3647-3653
    • /
    • 2012
  • In active noise control filter, IIR filter structure which used for control filter assures the stability property. The stability characteristics of IIR filter structure is mainly determined by pole location of control filter within unit disc, so stable selection of the value of control filter coefficient is very important. In this paper, we proposed novel adaptive stabilized Filtered_U LMS algorithms with IIR filter structure which has better convergence speed and less computational burden than conventional FIR structures, for multi-channel active noise control with vehicle enclosure signal case. For better convergence speed in adaptive algorithms, fuzzy LMS algorithms where convergence coefficient computed by a fuzzy PI type controller was proposed.

Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier

  • Akhlaghi, Majid;Emami, Farzin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.237-241
    • /
    • 2013
  • This paper presents an efficient evolutionary method to optimize the gain ripple of multi-pumps photonic crystal fiber Raman amplifier using the Fuzzy Adaptive Modified PSO (FAMPSO) algorithm. The original PSO has difficulties in premature convergence, performance and the diversity loss in optimization as well as appropriate tuning of its parameters. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated and results are compared with the PSO algorithm. It is shown that FAMPSO has a high quality solution, superior convergence characteristics and shorter computation time.

Design of Adaptive Fuzzy Logic Controller for SVC using Neural Network (신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hun;Hwang, Gi-Hyun;Kim, Hyung-Su;Park, June-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.121-126
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLC[8] for. three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[8].

  • PDF

A Fuzzy Logic Controller for Speed Control of a DC Series Motor Using an Adaptive Evolutionary Computation

  • Hwang, Gi-Hyun;Hwang, Hyun-Joon;Kim, Dong-Wan;Park, June-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • In this paper, an Adaptive Evolutionary Computation(AEC) is proposed. AEC uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner is order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. AEC is used to design the membership functions and the scaling factors of fuzzy logic controller (FLC). To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than that of PD controller.

  • PDF

Robust Adaptive Output Feedback Controller Using Fuzzy-Neural Networks for a Class of Uncertain Nonlinear Systems (퍼지뉴럴 네트워크를 이용한 불확실한 비선형 시스템의 출력 피드백 강인 적응 제어)

  • Hwang, Young-Ho;Lee, Eun-Wook;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we address the robust adaptive backstepping controller using fuzzy neural network (FHIN) for a class of uncertain output feedback nonlinear systems with disturbance. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The state estimation is solved using K-fillers. All unknown nonlinear functions are approximated by FNN. The FNN weight adaptation rule is derived from Lyapunov stability analysis and guarantees that the adapted weight error and tracking error are bounded. The compensated controller is designed to compensate the FNN approximation error and external disturbance. Finally, simulation results show that the proposed controller can achieve favorable tracking performance and robustness with regard to unknown function and external disturbance.

  • PDF

A Design of Fuzzy Logic Controllers for High-Angle-of-Attack Flight Control of Aircraft Using Adaptive Evolutionary Algorithms (적응진화 알고리즘을 이용한 항공기의 고공격각 비행 제어를 위한 퍼지 제어기 설계)

  • Won, Taep-Hyun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.995-1002
    • /
    • 2000
  • In this paper, fuzzy logic controllers(FLC) are designed for control of flight. For tuning FLC, we used adaptive evolutionary algorithms(AEA) which uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. We used AEA to search for optimal settings of the membership functions shape and gains of the inputs and outputs of FLC. Finally, the proposed controller is applied to the high-angle-of-attack flight system for a supermaneuverable version of the f-18 aircraft and compares with other methods.

  • PDF

Speed Control of Induction Motor Drive using Adaptive FNN Controller (적응 FNN 제어기를 이용한 유도전동기 드라이브의 속도제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Lee, Young-Sil;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.143-146
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for speed control of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions.

  • PDF