• Title/Summary/Keyword: Adaptive FEC

Search Result 45, Processing Time 0.029 seconds

Adaptive Forward Error Correction Scheme for Real-Time Communication in Satellite IP Networks

  • Cho, Sung-Rae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1116-1132
    • /
    • 2010
  • In this paper, a new forward error correction (FEC) protocol is proposed for point-to-multipoint satellite links. Link-layer error control protocols in point-to-multipoint satellite links impose several problems such as unreliability and receiver-heterogeneity. To resolve the problem of heterogeneous error rates at different receivers, the proposed scheme exploits multiple multicast channels to which each receiver tunes. The more channels a receiver tunes to, the more powerful error correcting capability it achieves. Based on its own channel condition, each receiver tunes to as many channels as it needs, which prevents from receiving unwanted parities. Furthermore, each receiver saves the decoding time, processing overhead, and processing energy. Performance evaluation shows that the proposed scheme guarantees the target PER while saving energy. The proposed technique is highly adaptive to the channel variation with respect to the throughput efficiency, and provides scalable PER and throughput efficiency.

Energy-aware Reed-Solomon Scheme for Improving Data Reliability in Solar-powered Wireless Sensor Networks (태양 에너지 기반 무선 센서 네트워크의 데이터 신뢰성 향상을 위한 에너지 적응형 Reed-Solomon 기법)

  • Jung, Jongwug;Kang, Minjae;Noh, Dong Kun;Cho, Sang Hoon
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • The data link layer operates reliable internode communication in the OSI reference model. Generally, the forward error correction (FEC) method is used in the data link layer of the wireless sensor network (WSN) environment that has a high frequency of errors. However, the FEC method consumes a significant amount of energy due to its high error correction rate, which negatively affects the networks' lifespan. In contrast with battery-based technology, energy is regularly recharged in the solar-powered WSN to meet higher energy needs than required for basic operation of existing nodes. By efficiently utilizing this surplus energy, the proposed energy-aware FEC method can reduce the data loss rate with no decrement of the network lifetime. The method employs a trade-off relationship between the energy and data loss rate by adjusting the parity length in the FEC method to the energy state in each node. The performance of the proposed scheme was verified through a simulation.

Raptor FEC Based Channel-Adaptive Video Transmission Scheme over WiBro Network (와이브로 환경에서 랩터 FEC 기반의 채널 적응형 비디오 전송 기법)

  • Kim, Hye-Soo;Jeong, Jae-Yun;Byun, Keun-Yung;Nam, Hyeong-Min;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.29-36
    • /
    • 2009
  • The packet loss and the disconnection during handoff are the most critical problems which degrade the video quality in wireless video streaming. To cope with these problems, we propose an efficient video streaming method in this paper, which does not only dynamically adjust the video transmission rate based on the raptor forward error correction (FEC) level, but also minimize the error propagation during handoff. Firstly, the channel bandwidth of the wireless broadband internet, called WiBro, is estimated by analyzing channel parameters including the carrier to interference and noise ratio (CINR) and the handoff. Secondly, the streaming server adjusts the next transmission rate according to the estimated channel bandwidth and the raptor FEC level to avoid packet error. Also, the encoder performs the intra refresh method that inserts an intra frame (I-frame) right after handoff to reduce the error propagation effectively. Experimental results indicate that the proposed method can improve the performance of the video streaming over WiBro network.

  • PDF

An Adaptive FEC based Error Control Algorithm for VoIP (VoIP를 위한 적응적 FEC 기반 에러 제어 알고리즘)

  • Choe, Tae-Uk;Jeong, Gi-Dong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.3
    • /
    • pp.375-384
    • /
    • 2002
  • In the current Internet, the QoS of interactive applications is hardly guaranteed because of variable bandwidth, packet loss and delay. Moreover, VoIP which is becoming an important part of the information infra-structure in these days, is susceptible to network packet loss and end-to-end delay. Therefore, it needs error control mechanisms in network level or application level. The FEC-based error control mechanisms are used for interactive audio application such as VoIP. The FEC sends a main information along with redundant information to recover the lost packets and adjusts redundant information depending on network conditions to reduce the bandwidth overhead. However, because most of the error control mechanisms do not consider end-to-end delay but packet loss rate, their performances are poor. In this paper, we propose a new error control algorithm, SCCRP, considering packet loss rate as well as end-to-end delay. Through experiments, we confirm that the SCCRP has a lower packet loss rate and a lower end-to-end delay after reconstruction.

Adaptive Error Control Based on Traffic Type and Channel Error Rate in Wireless ATM (무선 ATM에서의 트래픽 형태 및 채널 오율에 기반한 적응 오류 제어)

  • 김영웅;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10A
    • /
    • pp.1532-1538
    • /
    • 1999
  • In general, because error rate of wireless link is higher than that of wired link, DLC layer protocol for wired network with low error rate is not proper for wireless environments. In addition, the conventional DLC layer protocol for wireless network is optimized for the low-speed data service, so it is difficult to use conventional DLC protocol in the current mobile communication environments handing high-speed and multimedia services. Therefore, a DLC layer protocol that is suitable to current wireless communication environments is required. In this paper, we propose a novel error control scheme that supports a variety of traffic attribute and is applicable to high-speed and multimedia data service in WATM. The proposed scheme provides enhanced throughput performance for real-time traffic by using modified ASR ARQ without ACK and reduces loss rate by using FEC in the case of high error condition. Also, for non real-time traffic, the use of ASR ARQ without ACK enhances throughput performance and delay time is decreased by using FEC in the case of high error rate channel. As a result of simulation, the proposed scheme has better performance than conventional ASR ARQ protocol in view of delay and throughput.

  • PDF

Performance Analysis of Forward Error Correction for Low Data-Rate Wireless Personal Area Networks (저속 무선 개인 영역 네트워크를 위한 FEC의 성능 분석)

  • Kim, Min-Su;Kim, Jong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.387-388
    • /
    • 2007
  • IEEE 802.15.4a의 UWB(ultra-wide band) 방식에서 PHY(physical layer) 시스템에 사용되는 FEC(forward error correction)는 RS(Reed-Solomon) 조직적(systematic) 블록 부호와 1/2의 부호율을 가진 조직적 길쌈 부호의 연접 형태로 이루어져 있다.[1] UWB 신호를 이용한 시스템은 연속적이지 않은 임펄스(impulse) 기반의 신호를 사용하기 때문에 정밀도 면에서 뛰어난 장점을 가진다. 본 논문에서는 IEEE P802.15.4a 표준에 명시되어 있는 FEC를 구현하여 AWG(adaptive white gaussian noise) 채널에서의 SNR(signal to noise ratio)에 따른 BER(bit error rate)을 구함으로써 성능을 분석하였다. 실험에서의 정확한 결과를 얻기 위해 15.4a의 UWB에서의 변조 방식에 따라 신호를 변조한 후 잡음을 삽입하여 결과를 도출하였다.

  • PDF

A Fault Tolerant ATM Switch using a Fully Adaptive Self-routing Algorithm - The Cyclic Banyan Network (실내 무선 통신로에서 파일럿 심볼을 삽입한 Concatenated FEC 부호에 의한 WATM의 성능 개선)

  • 박기식;강영흥;김종원;정해원;양해권;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1276-1284
    • /
    • 1999
  • We have evaluated the BER's and CLP's of Wireless ATM (WATM) cells employing the concatenated FEC code with pilot symbols for fading compensation through the simulation in indoor wireless channel modeled as a Rayleigh and a Rician fading channel, respectively. The results of the performance evaluation are compared with those obtained by employing the convolutional code in the same condition. In Rayleigh fading channel, considering the maximum tolerance BER ( $10^-3$) as a criterion of the voice service, it is blown that the performance improvement of about 4 dB is obtained in terms of $E_b/N_o$ by employing the concatenated FEC code with pilot symbols rather than the convolutional code with pilot symbols.When the values of K parameter which means the ratio of the direct signal to scattered signal power in Rician fading channel are 6 and 10, it is shown that the performance improvement of about 4 dB and 2 dB is obtained, respectively, in terms of $E_b/N_o$ by employing the concatenated FEC code with pilot symbols considering the maximum tolerance BER of the voice service. Also in Rician fading channel of K=6 and K= 10, considering CLP = $10^-3$ as a criterion, it is observed that the performance improvement of about 3.5 dB and1.5 dB is obtained, respectively, in terms of $E_b/N_o$ by employing the concatenated FEC code with pilot symbols.

  • PDF

Adaptive QoS-based system design for Video On Demand Service. (Video On Demand 서비스의 QoS 적응적인 시스템 설계에 관한 연구.)

  • 정혜동;서원범;최지훈;서덕영
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.979-982
    • /
    • 2000
  • In this paper we suggest the adaptive QoS-based VOD system design, which can diagnose and reflect the variable network situation. This system is based on the changeable Forward Error Correction(FEC) coding and re-transmission to enhance system quality by using the measured real-time network value such as loss, delay and jitter.

  • PDF

Network-Adaptive Transport Error Control for Reliable Wireless Media Transmission (신뢰성 있는 무선 미디어 전송을 위한 네트워크 적응형 전송오류 제어)

  • Lee Chul-Ho;Choi Jeong-Yong;Kwon Young-Woo;Kim Jongwon;Shin Jitae;Jeon Dong-San;Kim Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.10 no.4 s.29
    • /
    • pp.548-556
    • /
    • 2005
  • In wireless network environments, wireless channels are characterized by time-varying fading and interference conditions, which may lead to burst packet corruptions and delay variation. This can cause severe quality degradation of streaming media. To guarantee successful transmission of media over the hostile wireless networks, where channel conditions are highly fluctuating, a flexible and network-adaptive transport method is required. Thus, we propose a network-adaptive transport error control consisting of packet-level interleaved FEC and delay-constrained ARQ, which acts as an application-level transport method of streaming media to alleviate burst packet losses while adapting to the changing channel condition in wireless networks. The performances of the proposed network-adaptive transport error control, general error control schemes, and hybrid schemes are evaluated by a developed simulator at the transport-level and video quality of streaming media. Simulation results show that the proposed mechanism provides the best overall performance among compared other schemes in terms of the transport-level performance of error control and the performance of video quality for streaming media.

Joint Source/Channel Rate Control based on Adaptive Frame Skip for Real-Time Video Transmission (적응형 화면 스킵 기반 실시간 비디오의 소스/채널 통합 부호화율 제어)

  • Lee, Myeong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.523-531
    • /
    • 2009
  • In this study, we propose a joint source/channel rate control algorithm for video encoder targeting packet erasure channel. Based on the buffer constraints of video communication systems, encoding rate constraint is presented. After defining source distortion models for coded and skipped video frames and a channel distortion model for packet errors and their propagation, an average distortion model of received video is proposed for a given encoding window. Finally, we define an optimization problem to minimize the average distortion for given channel rates and packet loss rates by controlling spatio-temporal parameters of source video and FEC block sizes. Then, we propose a window-based algorithm to solve the problem in real-time.

  • PDF