• Title/Summary/Keyword: Adaptive FEC

Search Result 45, Processing Time 0.024 seconds

An Adaptive FEC Code Control Algorithm for Mobile Wireless Sensor Networks

  • Ahn Jong-Suk;Hong Seung-Wook;Heidemann John
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.489-498
    • /
    • 2005
  • For better performance over a noisy channel, mobile wireless networks transmit packets with forward error correction (FEC) code to recover corrupt bits without retransmission. The static determination of the FEC code size, however, degrades their performance since the evaluation of the underlying channel state is hardly accurate and even widely varied. Our measurements over a wireless sensor network, for example, show that the average bit error rate (BER) per second or per minute continuously changes from 0 up to $10^{-3}$. Under this environment, wireless networks waste their bandwidth since they can't deterministically select the appropriate size of FEC code matching to the fluctuating channel BER. This paper proposes an adaptive FEC technique called adaptive FEC code control (AFECCC), which dynamically tunes the amount of FEC code per packet based on the arrival of acknowl­edgement packets without any specific information such as signal to noise ratio (SNR) or BER from receivers. Our simulation experiments indicate that AFECCC performs better than any static FEC algorithm and some conventional dynamic hybrid FEC/ARQ algorithms when wireless channels are modeled with two-state Markov chain, chaotic map, and traces collected from real sensor networks. Finally, AFECCC implemented in sensor motes achieves better performance than any static FEC algorithm.

Bandwidth Efficient Adaptive Forward Error Correction Mechanism with Feedback Channel

  • Ali, Farhan Azmat;Simoens, Pieter;de Meerssche, Wim Van;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.322-334
    • /
    • 2014
  • Multimedia content is very sensitive to packet loss and therefore multimedia streams are typically protected against packet loss, either by supporting retransmission requests or by adding redundant forward error correction (FEC) data. However, the redundant FEC information introduces significant additional bandwidth requirements, as compared to the bitrate of the original video stream. Especially on wireless and mobile networks, bandwidth availability is limited and variable. In this article, an adaptive FEC (A-FEC) system is presented whereby the redundancy rate is dynamically adjusted to the packet loss, based on feedback messages from the client. We present a statistical model of our A-FEC system and validate the proposed system under different packet loss conditions and loss probabilities. The experimental results show that 57-95%bandwidth gain can be achieved compared with a static FEC approach.

Adaptive FEC and Rate Adaptation for High-speed Transport (고속 전송을 위한 적응형 FEC 및 전송률 제어)

  • Chang Hye young;Kim Jong won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3B
    • /
    • pp.85-94
    • /
    • 2005
  • In this paper, we propose a reliable high-speed UDP-based media transport with an adaptive error control. The proposed adaptive transport scheme controls the amount of redundancy by monitoring the network in order to adapt to network fluctuations efficiently. The feedback of receiver enables the sender to be aware of current reception status (i.e., rate and type of packet loss) and to estimate the expected network status. Based on this, the proposed transport attempts to enable reliable transport by adaptively controlling the amount of both whole sending rate and the ratio for adaptive FEC code. Experiment with high-speed network has been conducted to verify the performance of the proposed system that demonstrates the enhanced reliability of the proposed transport at the speed of up to several hundred Mbps.

The Study of Error Correctment with Adaptive FEC(Adaptive Forward Error Correction) (적응형 FEC(Adaptive Forward Error Correction)를 이용한 에러 복구에 관한 연구)

  • 김상형;신정아;조재상;이성인;유우종;유원경;유관종;김두현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.304-306
    • /
    • 2003
  • 최근 이질적인 네트워크 환경에 적합한 다양한 멀티미디어 데이터를 서비스할 수 있는 연구가 광범위하게 이루어 지고 있다. 따라서 유동적인 네트웍 상황에 맞추어 전송되는 스트리밍 데이터는 사용자에게 보다 우수한 품질의 서비스를 제공받을 수 있는 기회를 준다. 본 논문에서는 대용량의 멀티미디어 데이터를 서비스하는 과정에서 발생하는 스트리밍 데이터의 에러 발생을 최소화할 수 있는 기법인 적응형 FEC 기법을 제안한다. 이 기법은 멀티미디어 데이터의 전송량을 최소화하면서 고화질 영상의 전송을 가능하게 한다.

  • PDF

An Adaptive FEC Algorithm for Mobile Wireless Networks (이동 무선 네트워크의 전송 성능 향상을 위한 적응적 FEC 알고리즘)

  • Ahn, Jong-Suk;John Heidmann
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.563-572
    • /
    • 2002
  • Wireless mobile networks tend to drop a large portion of packets due to propagation errors rather than congestion. To Improve reliability over noisy wireless channels, wireless networks can employ forward error correction (FEC) techniques. Static FEC algorithms, however, can degrade the performance by poorly matching their overhead to the degree of the underlying channel error, especially when the channel path loss rate fluctuates widely. This paper investigates the benefits of an adaptable FEC mechanism for wireless networks with severe packet loss by analytical analysis or measurements over a real wireless network called sensor network. We show that our adaptive FEC named FECA (FEC-level Adaptation) technique improves the performance by dynamically tuning FEC strength to the current amount of wireless channel loss. We quantify these benefits through a hybrid simulation integrating packet-level simulation with bit-level details and validate that FECA keeps selecting the appropriate FEC-level for a constantly changing wireless channel.

Design and Implementation of MPEG-4 Streaming System with Prioritized Adaptive Transport (우선순위화 기반 적응형 전송 기능을 가진 MPEG-4 스트리밍 시스템의 설계 및 구현)

  • 박상훈;장혜영;권영우;김종원;유웅식;권오형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.859-867
    • /
    • 2004
  • To provide high-quality media streaming service over the best-effort Internet, a streaming methodology is required to response to the dynamic fluctuation of underlying networks. In this paper, we implement the MPEG-4 streaming system with adaptive transport based on priorities of media packets. The implemented system is composed of the common MPEG-4 streaming components such as elementary stream provider, sync and DMIF layer, and adaptive transport module including data prioritization and FEC control. More specifically, the prioritized sync layer packets (based on object level) are delivered to the transport module and then are encoded by an adaptive FEC encoder to help reliable transport. The FEC combination is dynamically adjusted by the feedback information from the receiver. In addition, low priority packets are selectively dropped to meet the limitation of available bandwidth. The experimental results over the emulation-based testbed show that the Proposed system can mitigate the impact of network fluctuation and thus improve the quality of streaming.

An Adaptive FEC Algorithm for Sensor Networks with High Propagation Errors (전파 오류가 높은 센서 네트워크를 위한 적응적 FEC 알고리즘)

  • 안종석
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.6
    • /
    • pp.755-763
    • /
    • 2003
  • To improve performance over noisy wireless channels, mobile wireless networks employ forward error correction(FEC) techniques. The performance of static FEC algorithms, however, degrades by poorly matching the overhead of their correction code to the degree of the fluctuating underlying channel error. This paper proposes an adaptive FEC technique called FECA(FEC-level Adaptation), which dynamically tunes FEC strength to the currently estimated channel error rate at the data link layer. FECA is suitable for wireless networks whose error rate is high and slowly changing compared to the round-trip time between two communicating nodes. One such example network would be a sensor network in which the average bit error rate is higher than $10^{-6}$ and the detected error rate at one time lasts a few hundred milliseconds on average. Our experiments show that FECA performs 15% in simulations with theoretically modeled wireless channels and in trace-driven simulations based on the data collected from real sensor networks better than any other static FEC algorithms.

Performance Analysis of DS-CDMA System of Phase Estimation Error for Mobile Satellite Wireless Communication Channel (이동위성 무선통신 채널에서 위상추정 에러가 있는 DS-CDMA 시스템의 성능 해석)

  • Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.170-176
    • /
    • 2007
  • In this paper, we improve performance for system when the carrier recovery signal is not perfect in the multipath mobile wireless communication fast fading channel based on DS-CDMA system. In the case, we use the phase estimation, diversity and adaptive FEC code technique in order to overcome this carrier phase error and mobile wireless fading. As a results in DS-CDMA system, we know that the appropriate use of diversity and adaptive FEC code technique reduced considerably performance degradation due to phase error.

  • PDF

An Adaptive FEC Code Control Algorithm for Mobile Sensor Networks (이동 센서 네트워크를 위한 적응적 FEC 코드 제어 알고리즘)

  • Lee Young-Su;Hong Seung-Wook;Ahn Jong-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.400-402
    • /
    • 2005
  • 전파(propagation) 오류가 빈번한 무선 이동 네트워크에서는 전송 성능을 향상하기 위해 FEC(Forward Error Correction) 알고리즘을 채택한다. 그러나 정적인 FEC 코드 제어 방식은 연속적으로 변화하는 전파 오류율에 알맞은 정정 코드(check code)를 적용하지 못해 성능이 저하된다. 일례로 측정한 고 오류 무선 센서 네트워크에서는 초단위 평균 BER(Bit Error Rate) 또는 분단위 평균 BER이 0에서 최대 $10^{-3}$까지 연속적으로 변화한다. 이러한 무선 환경에서 전파 오류를 $100\%$ 복구하기 위한 정정 코드를 채택하는 경우에는, 불필요한 정정 코드량은 전체 데이터에 최대 $20\%$를 차지한다. 본 논문에서는 무선 채널의 BER을 직접 측정하지 않고 패킷 전송 성공 여부에 따라 정정 코드의 량, 즉 FEC단계를 동적으로 변화하는 AFECCC (Adaptive FEC Code Control) 알고리즘을 소개한다. AFECCC는 트레이스 기반(trace-driven) 시뮬레이션에서 정적 FEC 방식에 비해 최대 $5\%$ 이상, 또한 실제 센서 네트워크에서는 정적 FEC 알고리즘에 비해 최대 $15\%$ 성능이 향상되었다.

  • PDF

A Study on BER Performance Improvement by using Adaptive FEC schemes in Visible Light Communication (백색 LED기반 가시광 통신시스템의 선택적 FEC 적용을 통한 BER 성능 향상에 관한 연구)

  • Kim, Kyun-Tak;Yun, Suck-Chang
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.99-106
    • /
    • 2016
  • In this paper, we propose an adaptive FEC scheme in visible light communication using white LED. To this end, we investigate the red, green and blue mixing ratio of white LED in order to achieve the white color, and the mixing ratio of those wavelength can be defined as 4 types. Based on those properties, the FEC technique is applied to the wavelength band with the lowest mixing ratio according to mixing ratio types. At that point, we use a LDPC channel coding scheme as the FEC technique. Therefore, the proposed system can mitigate the reduction of data rate and improve total BER performance.