• Title/Summary/Keyword: Adaptive Edge

Search Result 418, Processing Time 0.022 seconds

An Adaptive Bit-reduced Mean Absolute Difference Criterion for Block-Matching Algorithm and Its VlSI Implementation (블럭 정합 알고리즘을 위한 적응적 비트 축소 MAD 정합 기준과 VLSI 구현)

  • Oh, Hwang-Seok;Baek, Yun-Ju;Lee, Heung-Kyu
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.543-550
    • /
    • 2000
  • An adaptive bit-reduced mean absolute difference (ABRMAD) is presented as a criterion for the block-matching algorithm (BMA) to reduce the complexity of the VLSI Implementation and to improve the processing time. The ABRMAD uses the lower pixel resolution of the significant bits instead of full resolution pixel values to estimate the motion vector (MV) by examining the pixels Ina block. Simulation results show that the 4-bit ABRMAD has competitive mean square error (MSE)results and a half less hardware complexity than the MAD criterion, It has also better characteristics in terms of both MSE performance and hardware complexity than the Minimax criterion and has better MSE performance than the difference pixel counting(DPC), binary block-matching with edge-map(BBME), and bit-plane matching(BPM) with the same number of bits.

  • PDF

Self-adaptive Content Service Networks (자치적응성 컨텐츠 서비스 네트워크)

  • Hong Sung-June;Lee Yongsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.149-155
    • /
    • 2004
  • This paper describes the self-adaptive Content Service Network (CSN) on Application Level Active Network (ALAN). Web caching technology comprises Content Delivery Network (CDN) for content distribution as well as Content Service Network (CSN) for service distribution. The IETF working group on Open Pluggalble Edge Service (OPES) is the works closely related to CSN. But it can be expected that the self-adaptation in ubiquitous computing environment will be deployed. The existing content service on CSN lacks in considering self-adaptation. This results in inability of existing network to support the additional services. Therefore, in order to address the limitations of the existing networks, this paper suggests Self-adaptive Content Service Network (CSN) using the GME and the extended ALAN to insert intelligence into the existing network.

  • PDF

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

Adaptive Image Interpolation Using Pixel Embedding (화소 삽입을 이용한 적응적 영상보간)

  • Han, Kyu-Phil;Oh, Gil-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1393-1401
    • /
    • 2014
  • This paper presents an adaptive image interpolation method using a pixel-based neighbor embedding which is modified from the patch-based neighbor embedding of contemporary super resolution algorithms. Conventional interpolation methods for high resolution detect at least 16-directional edges in order to remove zig-zaging effects and selectively choose the interpolation strategy according to the direction and value of edge. Thus, they require much computation and high complexity. In order to develop a simple interpolation method preserving edge's directional shape, the proposed algorithm adopts the simplest Haar wavelet and suggests a new pixel-based embedding scheme. First, the low-quality image but high resolution, magnified into 1 octave above, is acquired using an adaptive 8-directional interpolation based on the high frequency coefficients of the wavelet transform. Thereafter, the pixel embedding process updates a high resolution pixel of the magnified image with the weighted sum of the best matched pixel value, which is searched at its low resolution image. As the results, the proposed scheme is simple and removes zig-zaging effects without any additional process.

An Adaptive Guided Filter for Performance Improvement of Aviation Image Fusion (항공 영상 융합의 성능 향상을 위한 적응 가이디드 필터)

  • Kim, Sun Young;Kang, Chang Ho;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.407-415
    • /
    • 2016
  • In this paper, an aviation image fusion method is proposed for creating an informative fused image through gray scale images within noise. The proposed method is based on an adaptive guided filter which adjusts regulation parameter of the filter based on peak signal noise ratio (PSNR) in order to behave as an edge-preserving filtering property. Simulation results demonstrate that the proposed method preserves the edge information of the input image and reduces the noise effect while maintaining designed PSNR.

An efficient adaptive finite element method based on EBE-PCG iterative solver for LEFM analysis

  • Hearunyakij, Manat;Phongthanapanich, Sutthisak
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.353-361
    • /
    • 2022
  • Linear Elastic Fracture Mechanics (LEFM) has been developed by applying stress analysis to determine the stress intensity factor (SIF, K). The finite element method (FEM) is widely used as a standard tool for evaluating the SIF for various crack configurations. The prediction accuracy can be achieved by applying an adaptive Delaunay triangulation combined with a FEM. The solution can be solved using either direct or iterative solvers. This work adopts the element-by-element preconditioned conjugate gradient (EBE-PCG) iterative solver into an adaptive FEM to solve the solution to heal problem size constraints that exist when direct solution techniques are applied. It can avoid the formation of a global stiffness matrix of a finite element model. Several numerical experiments reveal that the present method is simple, fast, and efficient compared to conventional sparse direct solvers. The optimum convergence criterion for two-dimensional LEFM analysis is studied. In this paper, four sample problems of a two-edge cracked plate, a center cracked plate, a single-edge cracked plate, and a compact tension specimen is used to evaluate the accuracy of the prediction of the SIF values. Finally, the efficiency of the present iterative solver is summarized by comparing the computational time for all cases.

New Adaptive Interpolation Based on Edge Direction extracted from the DCT Coefficient Distribution (DCT 계수 분포를 이용해 추출한 edge 방향성에 기반한 새로운 적응적 보간 기법)

  • Kim, Jaehun;Kim, Kibaek;Jeon, Gwanggil;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.10-20
    • /
    • 2013
  • Nowadays, video technology has been successfully improved creating tremendous results. As video technology improve, multimedia devices and demands from users are diversified. Therefore, a video codec used in these devices should support various displays with different resolutions. The technology to generate a higher resolution image from the associated low-resolution image is called interpolation. Interpolation is generally performed in either the spatial domain or the DCT domain. To use the advantages of both domains, we have proposed the new adaptive interpolation algorithm based on edge direction, which adaptively exploits the advantages of both domains. The experimental results demonstrate that our algorithm performs well in terms of PSNR and reduces the blocking artifacts.

Extended Adaptive Spatio-Temporal Auto-Regressive Model for Video Sequence (동영상에서의 확장된 시공간 적응적 Auto-regressive 모델의 연구)

  • Doo, Seok-Joo;Kang, Moon-Gi
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.54-59
    • /
    • 1999
  • In this paper, a generalized auto-regressive(AR) model is proposed for linear prediction based on adaptive spatio-temporal support region(ASTSR). The conventional AR model suffers from the drawback that the prediction error increases in the edge region because the rectangular support region of the edge does not satisfy the stationary assumption. Thus, the proposed approach puts an emphasis on the formulation of a spatio-temporally adaptive support region for the AR model, called ASTSR. The ASTSR consists of two parts: the adaptive spatial support region(ASSR) connected with edges and the adaptive temporal support region(ATSR) related to temporal discontinuities. The AR model based on ASTSR not only produces more accurate model parameters but also reduces the computational complexity in the motion picture restoration.

  • PDF

Adaptive High-order Variation De-noising Method for Edge Detection with Wavelet Coefficients

  • Chenghua Liu;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.412-434
    • /
    • 2023
  • This study discusses the high-order diffusion method in the wavelet domain. It aims to improve the edge protection capability of the high-order diffusion method using wavelet coefficients that can reflect image information. During the first step of the proposed diffusion method, the wavelet packet decomposition is a more refined decomposition method that can extract the texture and structure information of the image at different resolution levels. The high-frequency wavelet coefficients are then used to construct the edge detection function. Subsequently, because accurate wavelet coefficients can more accurately reflect the edges and details of the image information, by introducing the idea of state weight, a scheme for recovering wavelet coefficients is proposed. Finally, the edge detection function is constructed by the module of the wavelet coefficients to guide high-order diffusion, the denoised image is obtained. The experimental results showed that the method presented in this study improves the denoising ability of the high-order diffusion model, and the edge protection index (SSIM) outperforms the main methods, including the block matching and 3D collaborative filtering (BM3D) and the deep learning-based image processing methods. For images with rich textural details, the present method improves the clarity of the obtained images and the completeness of the edges, demonstrating its advantages in denoising and edge protection.

Adaptive Extended Bilateral Motion Estimation Considering Block Type and Frame Motion Activity (블록의 성질과 프레임 움직임을 고려한 적응적 확장 블록을 사용하는 프레임율 증강 기법)

  • Park, Daejun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.342-348
    • /
    • 2013
  • In this paper, a novel frame rate up conversion (FRUC) algorithm using adaptive extended bilateral motion estimation (AEBME) is proposed. Conventionally, extended bilateral motion estimation (EBME) conducts dual motion estimation (ME) processes on the same region, therefore involves high complexity. However, in this proposed scheme, a novel block type matching procedure is suggested to accelerate the ME procedure. We calculate the edge information using sobel mask, and the calculated edge information is used in block type matching procedure. Based on the block type matching, decision will be made whether to use EBME. Motion vector smoothing (MVS) is adopted to detect outliers and correct outliers in the motion vector field. Finally, overlapped block motion compensation (OBMC) and motion compensated frame interpolation (MCFI) are adopted to interpolate the intermediate frame in which OBMC is employed adaptively based on frame motion activity. Experimental results show that this proposed algorithm has outstanding performance and fast computation comparing with EBME.