• Title/Summary/Keyword: Adaptive Capacity

Search Result 387, Processing Time 0.026 seconds

Analysis of regional type according to spatial correspondence between heat wave vulnerable areas and health damage occurrence (폭염 취약지역과 건강 피해 발생의 공간적 일치성에 따른 지역 유형 분석)

  • Hee-Soo HWANG;Ji Yoon CHOI;Jung Eun KANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.89-113
    • /
    • 2023
  • This study aimed to identify heat wave vulnerable areas and discuss spatial typology and policy directions through spatial coincidence analysis of heat wave damage. By utilizing the climate change vulnerability assessment of the Intergovernmental Panel on Climate Change (IPCC) and Spatial Statistics Comparison Analysis, this study examined cities, counties, and districts in South Korea for five years (2015-2019), including 2018, when the heat wave was most extreme. It was determined that the number of heat wave days (exposure) was the most impactful among various factors for heat wave vulnerability. Sensitivity and adaptive capacity to heat waves were found to vary according to regional characteristics. The relationship between heat wave vulnerability and damage was categorized into four types through spatial coherence. Hot to Hot and Cold to Cold types have a positive relationship between vulnerability and damage, while Hot to Cold and Cold to Hot types have a negative relationship. The findings suggest that since different types of regions have distinct characteristics and conditions, policies and research for improvement should be directed to address each region separately. This study may be used as basic data for establishing heat-related policies in the future, as it categorizes regions by considering both heat vulnerability and damage and examines the direction of response by type.

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

Cardio-pulmonary Adaptation to Physical Training (운동훈련(運動訓練)에 대(對)한 심폐기능(心肺機能)의 적응(適應)에 관(關)한 연구(硏究))

  • Cho, Kang-Ha
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.103-120
    • /
    • 1967
  • As pointed out by many previous investigators, the cardio-pulmonary system of well trained athletes is so adapted that they can perform a given physical exercise more efficiently as compared to non-trained persons. However, the time course of the development of these cardio-pulmonary adaptations has not been extensively studied in the past. Although the development of these training effects is undoubtedly related to the magnitude of an exercise load which is repeatedly given, it would be practical if one could maintain a good physical fitness with a minimal daily exercise. Hence, the present investigation was undertaken to study the time course of the development of cardio-pulmonary adaptations while a group of non-athletes was subjected to a daily 6 to 10 minutes running exercise for a period of 4 weeks. Six healthy male medical students (22 to 24 years old) were randomly selected as experimental subjects, and were equally divided into two groups (A and B). Both groups were subjected to the same daily running exercise (approximately 1,000 kg-m). 6 days a week for 4 weeks, but the rate of exercise was such that the group A ran on treadmill with 8.6% grade for 10 min daily at a speed of 127 m/min while the group B ran for 6 min at a speed of 200 m/min. In order to assess the effects of these physical trainings on the cardio-pulmonary system, the minute volume, the $O_2$ consumption, the $CO_2$ output and the heart rate were determined weekly while the subject was engaged in a given running exercise on treadmill (8.6% grade and 127 m/min) for a period of 5 min. In addition, the arterial blood pressure, the cardiac output, the acid-base state of arterial blood and the gas composition of arterial blood were also determined every other week in 4 subjects (2 from each group) while they were engaged in exercise on a bicycle ergometer at a rate of approximately 900 kg m/min until exhaustion. The maximal work capacity was also determined by asking the subject to engage in exercise on treadmill and ergometer until exhaustion. For the measurement of minute volume, the expired gas was collected in a Douglas bag. The $O_2$ consumption and the $CO_2$ output were subsequently computed by analysing the expired gas with a Scholander micro gas analyzer. The heart rate was calculated from the R-R interval of ECG tracings recorded by an Offner RS Dynograph. A 19 gauge Cournand needle was inserted into a brachial artery, through which arterial blood samples were taken. A Statham $P_{23}AA$ pressure transducer and a PR-7 Research Recorder were used for recording instantaneous arterial pressure. The cardiac output was measured by indicator (Cardiogreen) dilution method. The results may be summarized as follows: (1) The maximal running time on treadmill increased linearly during the 4 week training period at the end of which it increased by 2.8 to 4.6 times. In general, an increase in the maximal running time was greater when the speed was fixed at a level at which the subject was trained. The mammal exercise time on bicycle ergometer also increased linearly during the training period. (2) In carrying out a given running exercise on treadmill (8.6%grade, 127 m/min), the following changes in cardio·pulmonary functions were observed during the training period: (a) The minute volume as well as the $O_2$ consumption during steady state exercise tended to decrease progressively and showed significant reductions after 3 weeks of training. (b) The $CO_2$ production during steady state exercise showed a significant reduction within 1 week of training. (c) The heart rate during steady state exercise tended to decrease progressively and showed a significant reduction after 2 weeks of training. The reduction of heart rate following a given exercise tended to become faster by training and showed a significant change after 3 weeks. Although the resting heart rate also tended to decrease by training, no significant change was observed. (3) In rallying out a given exercise (900 kg-m/min) on a bicycle ergometer, the following change in cardio-vascular functions were observed during the training period: (3) The systolic blood pressure during steady state exercise was not affected while the diastolic blood Pressure was significantly lowered after 4 weeks of training. The resting diastolic pressure was also significantly lowered by the end of 4 weeks. (b) The cardiac output and the stroke volume during steady state exercise increased maximally within 2 weeks of training. However, the resting cardiac output was not altered while the resting stroke volume tended to increase somewhat by training. (c) The total peripheral resistance during steady state exercise was greatly lowered within 2 weeks of training. The mean circulation time during exorcise was also considerably shortened while the left heart work output during exercise increased significantly within 2 weeks. However, these functions_at rest were not altered by training. (d) Although both pH, $P_{co2}\;and\;(HCO_3-)$ of arterial plasma decreased during exercise, the magnitude of reductions became less by training. On the other hand, the $O_2$ content of arterial blood decreased during exercise before training while it tended to increase slightly after training. There was no significant alteration in these values at rest. These results indicate that cardio-pulmonary adaptations to physical training can be acquired by subjecting non-athletes to brief daily exercise routine for certain period of time. Although the time of appearance of various adaptive phenomena is not identical, it may be stated that one has to engage in daily exercise routine for at least 2 weeks for the development of significant adaptive changes.

  • PDF

Development of a Climate Change Vulnerability Index on the Health Care Sector (기후변화 건강 취약성 평가지표 개발)

  • Shin, Hosung;Lee, Suehyung
    • Journal of Environmental Policy
    • /
    • v.13 no.1
    • /
    • pp.69-93
    • /
    • 2014
  • The aim of this research was to develop a climate change vulnerability index at the district level (Si, Gun, Gu) with respect to the health care sector in Korea. The climate change vulnerability index was esimated based on the four major causes of climate-related illnesses : vector, flood, heat waves, and air pollution/allergies. The vulnerability assessment framework consists of six layers, all of which are based on the IPCC vulnerability concepts (exposure, sensitivity, and adaptive capacity) and the pathway of direct and indirect impacts of climate change modulators on health. We collected proxy variables based on the conceptual framework of climate change vulnerability. Data were standardized using the min-max normalization method. We applied the analytic hierarchy process (AHP) weight and aggregated the variables using the non-compensatory multi-criteria approach. To verify the index, sensitivity analysis was conducted by using another aggregation method (geometric transformation method, which was applied to the index of multiple deprivation in the UK) and weight, calculated by the Budget Allocation method. The results showed that it would be possible to identify the vulnerable areas by applying the developed climate change vulnerability assessment index. The climate change vulnerability index could then be used as a valuable tool in setting climate change adaptation policies in the health care sector.

  • PDF

Landslide Vulnerability Mapping considering GCI(Geospatial Correlative Integration) and Rainfall Probability In Inje (GCI(Geospatial Correlative Integration) 및 확률강우량을 고려한 인제지역 산사태 취약성도 작성)

  • Lee, Moung-Jin;Lee, Sa-Ro;Jeon, Seong-Woo;Kim, Geun-Han
    • Journal of Environmental Policy
    • /
    • v.12 no.3
    • /
    • pp.21-47
    • /
    • 2013
  • The aim is to analysis landslide vulnerability in Inje, Korea, using GCI(Geospatial Correlative Integration) and probability rainfalls based on geographic information system (GIS). In order to achieve this goal, identified indicators influencing landslides based on literature review. We include indicators of exposure to climate(rainfall probability), sensitivity(slope, aspect, curvature, geology, topography, soil drainage, soil material, soil thickness and soil texture) and adaptive capacity(timber diameter, timber type, timber density and timber age). All data were collected, processed, and compiled in a spatial database using GIS. Karisan-ri that had experienced 470 landslides by Typhoon Ewinia in 2006 was selected for analysis and verification. The 50% of landslide data were randomly selected to use as training data, while the other 50% being used for verification. The probability of landslides for target years (1 year, 3 years, 10 years, 50 years, and 100 years) was calculated assuming that landslides are triggered by 3-day cumulative rainfalls of 449 mm. Results show that number of slope has comparatively strong influence on landslide damage. And inclination of $25{\sim}30^{\circ}C$, the highest correlation landslide. Improved previous landslide vulnerability methodology by adopting GCI. Also, vulnerability map provides meaningful information for decision makers regarding priority areas for implementing landslide mitigation policies.

  • PDF

Changes of Heart Rate During Marathon Running (장거리 (마라톤)선수에서의 전 경기중 심박동수의 변화)

  • Kim, In-Kyo;Lee, Jung-Woo;Hah, Jong-Sik;Ryu, Yun-Hee;Choi, Jung-Ok;Kim, Ki-Ho
    • The Korean Journal of Physiology
    • /
    • v.13 no.1_2
    • /
    • pp.1-12
    • /
    • 1979
  • To evaluate the present status of physical fittness of Korean long distance runners, body fat, pulmonary functions, maximal oxygen intake and oxygen debt were measured in 5 elite marathoners (A group), 6 college student runners (B group) and 3 middle school student runners (C group). After laboratory tests, full course marathon running was performed in 2 elite marathoners during which their heart rates were monitored continuously. The results are summerized as follows: 1) Total body fat in all three groups are in the range of 13-15% of their body weight. 2) In all three groups, average values of various pulmonary functions were within the normal limits, but those of tidal volume were higher and respiratory rate were lower in comparison to normal values. These phenomena may represent respiratory adaptations against training. The average resting oxygen consumptions in A,B and C were $322{\pm}23$, $278{\pm}14$ and $287{\pm}16$m1/min, respectively. 3) In all three groups, resting blood pressures were in the normal range, but the resting heart rate was slightly lower in groups A $(56{\pm}3\;beats/min)$ and B $(64{\pm}2\;beats/min)$ and higher in group C $(82{\pm}9\;beats/min)$ in comparison to normal values. These changes in cardiovascular functions in marathoners may also represent adaptive phenomena. 4) During treadmill running the minute ventilation and oxygen consumption of the runners increased lineally with work load in all three groups. When the oxygen consumption was related to heart rate, it appeared to be a exponential function of the heart rate in all three groups. 5) The average maximal heart rates during maximal work were $196{\pm}3$, $191{\pm}3$ and $196{\pm}5\;beats/min$ for groups A,B and C, respectively. Maximal oxygen intakes were $84.2{\pm}3.3\;ml/min/kg$ in group A, $65.2{\pm}1.1\;ml/min/kg$ in group B and $58.7{\pm}0.4\;ml/min/kg$ in group C. 6) In all three groups, oxygen debts and the rates of recovery of heart rate after treadmill running were lower than those of long ditsance runners reported previously. 7) The 40 km running time in 2 elite marathoners was recorded to be $2^{\circ}42'25'$, and their mean speed was 243 m/min (ranged 218 to 274 m/min). The heart rate appeared to increase lineally with running speed, and the total energy expenditure during 40 km running was approximately 1360.2 Calories. From these it can be speculated that if their heart rates were maintained at 166 beats/min during the full course of marathon running, their records would be arround $2^{\circ}15'$. Based on these results, we may suspect that a successful long distance running is, in part, dependent on the economical utilization of one's aerobic capacity.

  • PDF

Vulnerability Assessment of Cultivation Facility by Abnormal Weather of Climate Change (이상기후에 의한 재배시설의 취약성 평가)

  • Yoon, Seong-Tak;Lee, Yong-Ho;Hong, Sun-Hee;Kim, Myung-Hyun;Kang, Kee-Kyung;Na, Young-Eun;Oh, Young-Ju
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.264-272
    • /
    • 2013
  • Climate changes have caused not only changes in the frequency and intensity of extreme climate events, but also temperature and precipitation. The damages on agricultural production system will be increased by heavy rainfall and snow. In this study we assessed vulnerability of crop cultivation facility and animal husbandry facility by heavy rain in 232 agricultural districts. The climate data of 2000 years were used for vulnerability analysis on present status and the data derived from A1B scenario were used for the assessment in the years of 2020, 2050 and 2100, respectively. Vulnerability of local districts was evaluated by three indices such as climate exposure, sensitivity and adaptive capacity, and each index was determined from selected alternative variables. Collected data were normalized and then multiplied by weight value that was elicited in delphi investigation. Jeonla-do and Gangwon-do showed higher climate exposures than the other provinces. The higher sensitivity to abnormal weather was observed from the regions that have large-scale cultivation facility complex compared to the other regions and vulnerability to abnormal weather also was higher at these provinces. In the projected estimation based on the SRES A1B, the vulnerability of controlled agricultural facility in Korea totally increased, especially was dramatic between 2000's and 2020 year.