• Title/Summary/Keyword: Adaptive Back-Stepping Control

Search Result 16, Processing Time 0.064 seconds

Speed Control of IPMSM Using Nonlinear and Adaptive Back-Stepping Controller Including Integral Gain (적분 이득의 비선형 적응 백스텝핑 제어 기법을 적용한 IPMSM의 속도 제어)

  • Jung, Seung-Hwan;Choy, Ick;Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.881-889
    • /
    • 2013
  • In this paper, a nonlinear and adaptive back-stepping control technique is proposed for a speed control of IPMSM(Interior Permanent Magnet Synchronous Motor). The gain of back-stepping controller(including integral value of the states error) is designed for stability of the system. In order to adapting fast in variation of load torque, the controller is including load torque estimator. The simulation is completed by using PSIM software. The simulation results show that the designed back-stepping controller make the system stable in the constant torque region, and has better tracking performance than a controller without the integral gain.

Sensorless Speed Control of IPMSM Using an Extended Kalman Filter and Nonlinear and Adaptive Back-Stepping Control Technique (비선형 적응 백스텝핑 제어 기법과 EKF를 적용한 IPMSM의 센서리스 속도 제어)

  • Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1413-1422
    • /
    • 2012
  • Adaptive back stepping control technique may provide robust control characteristics under parameter perturbation caused by changing external condition. In order to synthesize a high-precision velocity controller for IPMSM(Interior Permanent Magnet Synchronous Motor) using this method, the period of control loop should be very small. However, because of the resolution of the encoder for speed measurement, control cycle is limited, which makes it difficult to improve the performance of the controller. This paper proposes a velocity controller design method based on nonlinear adaptive back-stepping method to accomplish fast and accurate performance. Here, an EKF(Extended Kalman Filter) method is incorporated for the estimation of the motor speed into the design of a speed controller using adapted back-stepping control technique. The performance of the proposed controller is demonstrated through simulation using PSIM.

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Jung, Seung-Hwan;Choy, Ick;Cho, Whang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of Interior Permanent Magnet Synchronous Motor (IPMSM). First, in order to improve the performance of speed tracking, a nonlinear back-stepping controller is designed. In addition, since it is difficult to achieve the high quality control performance without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. Finally, for the efficiency of power consumption of the motor, controller is designed to operate motor with the minimum current for the required maximum torque. The proposed controller is tested through experiment with a 1-hp Interior Permanent Magnet Synchronous Motor (IPMSM) for the angular velocity reference tracking performance and load torque volatility estimation, and to test the Maximum Torque per Ampere (MTPA) operation. The result verifies the efficacy of the proposed controller.

Design and Implementation of Back-stepping Control for Path Tracking of Mobile Manipulator of Logistics and Manufacturing (물류이송 및 제조용 이동형 매니퓰레이터의 경로 추적을 위한 백스테핑 제어 설계와 구현)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.301-306
    • /
    • 2021
  • In this paper, we propose a modified back-stepping control method in view of the dynamic model of mobile manipulator has the nonholonomic constraints, these constraints should be considered to design a tracking controller for the mobile manipulator. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot systems. and the modified adaptive back0stepping method is applied to constructing the controller. The proposed controller can realize the tracking trajectory of the reference path. The efficiency and robustness of this control method is demonstrated by the simulation.

Robust Adaptive Back-stepping Control Using Dual Friction Observer and RNN with Disturbance Observer for Dynamic Friction Model (외란관측기를 갖는 RNN과 이중마찰관측기를 이용한 동적마찰모델에 대한 강인한 적응 백-스테핑제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments. Friction parameters can be also varied according to contact conditions such as the variation of temperature and lubrication. Thus, in order to overcome these problems and obtain the desired position tracking performance, a robust adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator are also developed. The feasibility of the proposed control scheme is verified through the experiment fur a ball-screw system.

Nonlinear Adaptive Control of Fermentation Process in Stirred Tank Bioreactor

  • Kim, Hak-Kyeong;Nguyen, Tan-Tien;Nam soo Jeong;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.277-282
    • /
    • 2002
  • This paper proposes a nonlinear adaptive controller based on back-stepping method for tracking reference substrate concentration by manipulating dilution rate in a continuous baker's yeast cultivating process in stirred tank bioreactor. Control law is obtained from Lyapunov control function to ensure asymptotical stability of the system. The Haldane model for the specific growth rate depending on only substrate concentration is used in this paper. Due to the uncertainty of specific growth rate, it has been modified as a function including the unknown parameter with known bounded values. The substrate concentration in the bioreactor and feed line are measured. The deviation from the reference is observed when the external disturbance such as the change of the feed is introduced to the system. The effectiveness of the proposed controller is shown through simulation results in continuous system.

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM 전동기의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.855-864
    • /
    • 2011
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of IPMSM(Interior Permanent Magnet Synchronous Motor). First, in order to improve the performance of speed tracking a nonlinear back-stepping controller is designed. Since it is difficult to control the high performance driving without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. In addition, for the efficiency of power consumption of the motor, controller is designed to operate motor with minimum current for maximum torque. The proposed controller is applied through simulation to the a 2-hp IPMSM for the angular velocity reference tracking performance and load torque volatility estimation, and to test the MTPA(Maximum Torque per Ampere) operation in constant torque operation region. The result verifies the efficacy of the proposed controller.

Modeling and Adaptive Motion Tracking Control of Two-Wheeled Welding Mobile Robot (WMR) (용접용 이륜 이동로봇의 모델링 및 적응 추종 제어)

  • Suh, Jin-Ho;Bui, Tring Hieu;Nguyen, Tan Tien;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.786-791
    • /
    • 2003
  • This paper proposes an adaptive control algorithm for nonholonomic mobile robots with unknown parameters and the proposed control method is used in numerical simulations for applying to a practical twowheeled welding mobile robot(WMR). The proposed adaptive controller to track an arbitrary given welding path is designed by using back-stepping technique and is derived for a nonlinear model under the assumption such that the system parameters are partially known. Moreover, the proposed adaptive control system is stable in the sense of Lyapunov stability. Inertia moments of system are considered to be unknown parameters and their values can be estimated simply by using update laws proposed in an adaptive control scheme of this research. The simulation results are provided to show the effectiveness of the accurate tracking capability of the proposed controller for two-wheeled welding mobile robot with a smooth curved reference welding path.

  • PDF

Position control of Electro hydrostatic actuator (EHA) using a modified back stepping controller (백스테핑제어기를 이용한 전기유압액추에이터의 위치제어)

  • Nam, D.N.C.;Yoon, J.I.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.9 no.3
    • /
    • pp.16-22
    • /
    • 2012
  • Nowadays, electro hydrostatic actuator (EHA) has shown great advantages over the conventional hydraulic actuators with valve control system. This paper presents a position control for an EHA using a modified back stepping controller. The controller is designed by combining a backstepping technique and adaptation laws via special Lyapunov functions. The control signal consists of an adaptive control signal to compensate for the nonlinearities and a simple robust structure to deal with a bounded disturbance. Experiments are carried out to investigate the effectiveness of the proposed controller.