• Title/Summary/Keyword: AdaBoost algorithm

Search Result 115, Processing Time 0.022 seconds

Corporate Credit Rating based on Bankruptcy Probability Using AdaBoost Algorithm-based Support Vector Machine (AdaBoost 알고리즘기반 SVM을 이용한 부실 확률분포 기반의 기업신용평가)

  • Shin, Taek-Soo;Hong, Tae-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.25-41
    • /
    • 2011
  • Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved them more powerful than traditional artificial neural networks (ANNs) (Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al., 2005; Kim, 2003).The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is so cost-sensitive particularly in financial classification problems such as the credit ratings that if the credit ratings are misclassified, a terrible economic loss for investors or financial decision makers may happen. Therefore, it is necessary to convert the outputs of the classifier into wellcalibrated posterior probabilities-based multiclass credit ratings according to the bankruptcy probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create the probabilities (Platt, 1999; Drish, 2001). This paper applied AdaBoost algorithm-based support vector machines (SVMs) into a bankruptcy prediction as a binary classification problem for the IT companies in Korea and then performed the multi-class credit ratings of the companies by making a normal distribution shape of posterior bankruptcy probabilities from the loss functions extracted from the SVMs. Our proposed approach also showed that their methods can minimize the misclassification problems by adjusting the credit grade interval ranges on condition that each credit grade for credit loan borrowers has its own credit risk, i.e. bankruptcy probability.

Grading meat quality of Hanwoo based on SFTA and AdaBoost (SFTA와 AdaBoost 기반 한우의 육질 등급 분석)

  • Cho, Hyunhak;Kim, Eun Kyeong;Jang, Eunseok;Kim, Kwang Baek;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.433-438
    • /
    • 2016
  • This paper proposes a grade prediction method to measure meat quality in Hanwoo (Korean Native Cattle) using classification and feature extraction algorithms. The applied classification algorithm is an AdaBoost and the texture features of the given ultrasound images are extracted using SFTA. In this paper, as an initial phase, we selected ultrasound images of Hanwoo for verifying experimental results; however, we ultimately aimed to develop a diagnostic decision support system for human body scan using ultrasound images. The advantages of using ultrasound images of Hanwoo are: accurate grade prediction without butchery, optimizing shipping and feeding schedule and economic benefits. Researches on grade prediction using biometric data such as ultrasound images have been studied in countries like USA, Japan, and Korea. Studies have been based on accurate prediction method of different images obtained from different machines. However, the prediction accuracy is low. Therefore, we proposed a prediction method of meat quality. From the experimental results compared with that of the real grades, the experimental results demonstrated that the proposed method is superior to the other methods.

Real-Time Side-Rear Vehicle Detection Algorithm for Blind Spot Warning Systems (사각지역경보시스템을 위한 실시간 측후방 차량검출 알고리즘)

  • Kang, Hyunwoo;Baek, Jang Woon;Han, Byung-Gil;Chung, Yoonsu
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.7
    • /
    • pp.408-416
    • /
    • 2017
  • This paper proposes a real-time side-rear vehicle detection algorithm that detects vehicles quickly and accurately in blind spot areas when driving. The proposed algorithm uses a cascade classifier created by AdaBoost Learning using the MCT (modified census transformation) feature vector. Using this classifier, the smaller the detection window, the faster the processing speed of the MCT classifier, and the larger the detection window, the greater the accuracy of the MCT classifier. By considering these characteristics, the proposed algorithm uses two classifiers with different detection window sizes. The first classifier quickly generates candidates with a small detection window. The second classifier accurately verifies the generated candidates with a large detection window. Furthermore, the vehicle classifier and the wheel classifier are simultaneously used to effectively detect a vehicle entering the blind spot area, along with an adjacent vehicle in the blind spot area.

An Algorithim for Converting 2D Face Image into 3D Model (얼굴 2D 이미지의 3D 모델 변환 알고리즘)

  • Choi, Tae-Jun;Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.41-48
    • /
    • 2015
  • Recently, the spread of 3D printers has been increasing the demand for 3D models. However, the creation of 3D models should have a trained specialist using specialized softwares. This paper is about an algorithm to produce a 3D model from a single sheet of two-dimensional front face photograph, so that ordinary people can easily create 3D models. The background and the foreground are separated from a photo and predetermined constant number vertices are placed on the seperated foreground 2D image at a same interval. The arranged vertex location are extended in three dimensions by using the gray level of the pixel on the vertex and the characteristics of eyebrows and nose of the nomal human face. The separating method of the foreground and the background uses the edge information of the silhouette. The AdaBoost algorithm using the Haar-like feature is also employed to find the location of the eyes and nose. The 3D models obtained by using this algorithm are good enough to use for 3D printing even though some manual treatment might be required a little bit. The algorithm will be useful for providing 3D contents in conjunction with the spread of 3D printers.

Real Time Face Detection and Recognition using Rectangular Feature based Classifier and Class Matching Algorithm (사각형 특징 기반 분류기와 클래스 매칭을 이용한 실시간 얼굴 검출 및 인식)

  • Kim, Jong-Min;Kang, Myung-A
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • This paper proposes a classifier based on rectangular feature to detect face in real time. The goal is to realize a strong detection algorithm which satisfies both efficiency in calculation and detection performance. The proposed algorithm consists of the following three stages: Feature creation, classifier study and real time facial domain detection. Feature creation organizes a feature set with the proposed five rectangular features and calculates the feature values efficiently by using SAT (Summed-Area Tables). Classifier learning creates classifiers hierarchically by using the AdaBoost algorithm. In addition, it gets excellent detection performance by applying important face patterns repeatedly at the next level. Real time facial domain detection finds facial domains rapidly and efficiently through the classifier based on the rectangular feature that was created. Also, the recognition rate was improved by using the domain which detected a face domain as the input image and by using PCA and KNN algorithms and a Class to Class rather than the existing Point to Point technique.

Study on Face recognition algorithm using the eye detection (눈 검출을 이용한 얼굴인식 알고리즘에 관한 연구)

  • Park, Byung-Joon;Kim, Ki-young;Kim, Sun-jib
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.491-496
    • /
    • 2015
  • Cloud computing has emerged with promise to decrease the cost of server additional cost and expanding the data storage and ease for computer resource sharing and apply the new technologies. However, Cloud computing also raises many new security concerns due to the new structure of the cloud service models. Therefore, the secure user authentication is required when the user is using cloud computing. This paper, we propose the enhanced AdaBoost algorithm for access cloud security zone. The AdaBoost algorithm despite the disadvantage of not detect a face inclined at least 20, is widely used because of speed and responsibility. In the experimental results confirm that a face inclined at least 20 degrees tilted face was recognized. Using the FEI Face Database that can be used in research to obtain a result of 98% success rate of the algorithm perform. The 2% failed rate is due to eye detection error which is the people wearing glasses in the picture.

Face Detection Based on Incremental Learning from Very Large Size Training Data (대용량 훈련 데이타의 점진적 학습에 기반한 얼굴 검출 방법)

  • 박지영;이준호
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.949-958
    • /
    • 2004
  • race detection using a boosting based algorithm requires a very large size of face and nonface data. In addition, the fact that there always occurs a need for adding additional training data for better detection rates demands an efficient incremental teaming algorithm. In the design of incremental teaming based classifiers, the final classifier should represent the characteristics of the entire training dataset. Conventional methods have a critical problem in combining intermediate classifiers that weight updates depend solely on the performance of individual dataset. In this paper, for the purpose of application to face detection, we present a new method to combine an intermediate classifier with previously acquired ones in an optimal manner. Our algorithm creates a validation set by incrementally adding sampled instances from each dataset to represent the entire training data. The weight of each classifier is determined based on its performance on the validation set. This approach guarantees that the resulting final classifier is teamed by the entire training dataset. Experimental results show that the classifier trained by the proposed algorithm performs better than by AdaBoost which operates in batch mode, as well as by ${Learn}^{++}$.

Algorithms for Classifying the Results at the Baccalaureate Exam-Comparative Analysis of Performances

  • Marcu, Daniela;Danubianu, Mirela;Barila, Adina;Simionescu, Corina
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.35-42
    • /
    • 2021
  • In the current context of digitalization of education, the use of modern methods and techniques of data analysis and processing in order to improve students' school results has a very important role. In our paper, we aimed to perform a comparative study of the classification performances of AdaBoost, SVM, Naive Bayes, Neural Network and kNN algorithms to classify the results obtained at the Baccalaureate by students from a college in Suceava, during 2012-2019. To evaluate the results we used the metrics: AUC, CA, F1, Precision and Recall. The AdaBoost algorithm achieves incredible performance for classifying the results into two categories: promoted / rejected. Next in terms of performance is Naive Bayes with a score of 0.999 for the AUC metric. The Neural Network and kNN algorithms obtain scores of 0.998 and 0.996 for AUC, respectively. SVM shows poorer performance with the score 0.987 for AUC. With the help of the HeatMap and DataTable visualization tools we identified possible correlations between classification results and some characteristics of data.

A Method for Deciding Permission of the ATM Using Face Detection (사용자 얼굴 검출을 이용한 ATM 사용 허가 판별 방법)

  • Lee, Jung-hwa;Kim, Tae-hyung;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.403-406
    • /
    • 2009
  • In this paper, we propose a method for deciding permission from the ATM(Automated Teller Machine) using face detection. First, we extract skin areas and make candidate face images from an input image, and then detect a face using Adaboost(Adaptive Boosting) algorithm. Next, proposed method executes a template matching for making a decision on whether to wear accessories like sunglasses or a mask in detected face image. Finally, this method decides whether to permit ATM service using this result. Experimental results show that proposed method performed well at indoors ATM environment for detecting whether to wear accessories.

  • PDF

A Realtime Hardware Design for Face Detection (얼굴인식을 위한 실시간 하드웨어 설계)

  • Suh, Ki-Bum;Cha, Sun-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.397-404
    • /
    • 2013
  • This paper propose the hardware architecture of face detection hardware system using the AdaBoost algorithm. The proposed structure of face detection hardware system is possible to work in 30frame per second and in real time. And the AdaBoost algorithm is adopted to learn and generate the characteristics of the face data by Matlab, and finally detected the face using this data. This paper describes the face detection hardware structure composed of image scaler, integral image extraction, face comparing, memory interface, data grouper and detected result display. The proposed circuit is so designed to process one point in one cycle that the prosed design can process full HD($1920{\times}1080$) image at 70MHz, which is approximate $2316087{\times}30$ cycle. Furthermore, This paper use the reducing the word length by Overflow to reduce memory size. and the proposed structure for face detection has been designed using Verilog HDL and modified in Mentor Graphics Modelsim. The proposed structure has been work on 45MHz operating frequency and use 74,757 LUT in FPGA Xilinx Virtex-5 XC5LX330.