• Title/Summary/Keyword: Ad hoc routing protocols

Search Result 257, Processing Time 0.022 seconds

A MAC Enhancement Technique for Quality of Service Guarantee in Wireless Local Area Networks (무선 네트워크에서 QoS 보장을 위한 MAC 향상 기법)

  • Lee, Dong-Geon;Kim, Byoung-Hoon;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1446-1459
    • /
    • 2008
  • In an infrastructure-based wireless network, an access point is used for all communications among mobile devices. However, when a mobile device moves into a dead Bone, a connectivity disruption between the mobile device and the access point occurs. Such connectivity disruption consequently leads to another connectivity disruption between the mobile device moving toward the dead zone and other wireless-enabled devices located within the area of the infrastructure-based wireless network. To cope with the connectivity disruption in the infrastructure-based wireless network the ad hoc network that dynamically forms a network without any preexisting communication infrastructure needs to be set up to provide seamless connections among mobile devices. In this paper, we propose the DNSQ-MAC (Dynamic Network State aware QoS-Medium Access Control) technique that meets the deadlines of MAC frames forwarded over hop-by-hop multipaths and guarantees the QoS performance of an ad hoc-based wireless network. Mobile devices incorporating the DNSQ-MAC technique are capable of adjusting to the new dynamic network status in order to enhance the QoS performance in the ad hoc-based wireless network. A case study which exploits the Qualnet simulator shows that the proposed DNSQ-MAC technique can guarantee the deadlines of MAC frames forwarded over hop-by-hop multipaths and enhance the QoS performance of various routing protocols and packet schedulers running on the network layer above the MAC layer.

  • PDF

Analysis of the Bogus Routing Information Attacks in Sensor Networks (센서 네트워크에서 AODV 라우팅 정보 변조공격에 대한 분석)

  • Lee, Myung-Jin;Kim, Mi-Hui;Chae, Ki-Joon;Kim, Ho-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.229-238
    • /
    • 2007
  • Sensor networks consist of many tiny sensor nodes that collaborate among themselves to collect, process, analyze, and disseminate data. In sensor networks, sensor nodes are typically powered by batteries, and have limited computing resources. Moreover, the redeployment of nodes by energy exhaustion or their movement makes network topology change dynamically. These features incur problems that do not appear in traditional, wired networks. Security in sensor networks is challenging problem due to the nature of wireless communication and the lack of resources. Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop suity mechanisms that can survive malicious attacks from "insiders" who have access to the keying materials or the full control of some nodes. In order to protect against insider attacks, it is necessary to understand how an insider can attack a sensor network. Several attacks have been discussed in the literature. However, insider attacks in general have not been thoroughly studied and verified. In this paper, we study the insider attacks against routing protocols in sensor networks using the Ad-hoc On-Demand Distance Vector (AODV) protocol. We identify the goals of attack, and then study how to achieve these goals by modifying of the routing messages. Finally, with the simulation we study how an attacker affects the sensor networks. After we understand the features of inside attacker, we propose a detect mechanism using hop count information.

Implementation of VANET Simulator using Matlab (Matlab을 이용한 VANET 시뮬레이터 구현)

  • Nam, Jae-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1171-1176
    • /
    • 2016
  • VANET are a special kind of MANET adapted to the communications between vehicles. In this work, we propose the models used for representing the communication among vehicles, vehicles mobility features, and VANET simulator using realistic vehicular mobility models. VANET requires that a traffic and network simulator should be used together to perform this test. But, simulator tool has been preferred over traffic simulation because it simple, easy and cheap. Goal of this paper is to create a simulation of Vehicular Ad-Hoc network for urban scenario which can be used for testing purposes. Such environment can be used while designing better MAC protocols in VANETs. We are evaluating the performance of two routing protocols namely AODV and DSDV. The comparison was based on the throughout, packet loss and end-to-end delay. We found that DSDV has less throughput performance and high routing overhead than AODV. On average end-to-end delay and packet loss, AODV performs better than DSDV.

CASPER: Congestion Aware Selection of Path with Efficient Routing in Multimedia Networks

  • Obaidat, Mohammad S.;Dhurandher, Sanjay K.;Diwakar, Khushboo
    • Journal of Information Processing Systems
    • /
    • v.7 no.2
    • /
    • pp.241-260
    • /
    • 2011
  • In earlier days, most of the data carried on communication networks was textual data requiring limited bandwidth. With the rise of multimedia and network technologies, the bandwidth requirements of data have increased considerably. If a network link at any time is not able to meet the minimum bandwidth requirement of data, data transmission at that path becomes difficult, which leads to network congestion. This causes delay in data transmission and might also lead to packet drops in the network. The retransmission of these lost packets would aggravate the situation and jam the network. In this paper, we aim at providing a solution to the problem of network congestion in mobile ad hoc networks [1, 2] by designing a protocol that performs routing intelligently and minimizes the delay in data transmission. Our Objective is to move the traffic away from the shortest path obtained by a suitable shortest path calculation algorithm to a less congested path so as to minimize the number of packet drops during data transmission and to avoid unnecessary delay. For this we have proposed a protocol named as Congestion Aware Selection Of Path With Efficient Routing (CASPER). Here, a router runs the shortest path algorithm after pruning those links that violate a given set of constraints. The proposed protocol has been compared with two link state protocols namely, OSPF [3, 4] and OLSR [5, 6, 7, 8].The results achieved show that our protocol performs better in terms of network throughput and transmission delay in case of bulky data transmission.

An Enhanced Greedy Message Forwarding Protocol for High Mobile Inter-vehicular Communications (고속으로 이동하는 차량간 통신에서 향상된 탐욕 메시지 포워딩 프로토콜)

  • Jang, Hyun-Hee;Yu, Suk-Dae;Park, Jae-Bok;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.48-58
    • /
    • 2009
  • Geo-graphical routing protocols as GPSR are known to be very suitable and useful for vehicular ad-hoc networks. However, a corresponding node can include some stale neighbor nodes being out of a transmission range, and the stale nodes are pone to get a high priority to be a next relay node in the greedy mode. In addition, some useful redundant information can be eliminated during planarization in the recovery mode. This paper deals with a new recovery mode, the Greedy Border Superiority Routing(GBSR), along with an Adaptive Neighbor list Management(ANM) scheme. Each node can easily treat stale nodes on its neighbor list by means of comparing previous and current Position of a neighbor. When a node meets the local maximum, it makes use of a border superior graph to recover from it. This approach improve the packet delivery ratio while it decreases the time to recover from the local maximum. We evaluate the performance of the proposed methods using a network simulator. The results shown that the proposed protocol reveals much better performance than GPSR protocol. Please Put the of paper here.

Performance Enhancement of AODV Routing Protocol Using Interrupt Message in MANET (MANET에서 Interrupt message를 이용한 AODV 라우팅 프로토콜의 성능 개선)

  • Lee, Yun-Kyung;Kim, Ju-Gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.10
    • /
    • pp.785-800
    • /
    • 2013
  • In MANET, AODV(Ad hoc On-demand Distance Vector) has its advantages as on-demand approach but it also has a disadvantage that the control packet overhead is high compared to other routing protocols. This paper improves the problem caused by Hello messages that are broadcasted periodically to detect the local connectivity and maintain neighbor list. Periodic hello messages reduce the Packet delivery ratio and the efficiency in the limited bandwidth. And its increased Control packet overhead leads to decrease the Residual battery capacity and the Network lifetime. Further, non-reactive nature of periodic hello messages in AODV has also been the source of numerous controversies. In order to solve these problems, this paper improves the performance by using the interrupt driven approach which removes periodic hello messages and decreases the Control packet overhead. Performance comparisons between the traditional AODV and proposed mod_AODV done with network simulator QualNet 5.0 show that the mod_AODV performs better in most performance metrics under scenarios with various values of simulation parameters.

Reliable multi-hop communication for structural health monitoring

  • Nagayama, Tomonori;Moinzadeh, Parya;Mechitov, Kirill;Ushita, Mitsushi;Makihata, Noritoshi;Ieiri, Masataka;Agha, Gul;Spencer, Billie F. Jr.;Fujino, Yozo;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.481-504
    • /
    • 2010
  • Wireless smart sensor networks (WSSNs) have been proposed by a number of researchers to evaluate the current condition of civil infrastructure, offering improved understanding of dynamic response through dense instrumentation. As focus moves from laboratory testing to full-scale implementation, the need for multi-hop communication to address issues associated with the large size of civil infrastructure and their limited radio power has become apparent. Multi-hop communication protocols allow sensors to cooperate to reliably deliver data between nodes outside of direct communication range. However, application specific requirements, such as high sampling rates, vast amounts of data to be collected, precise internodal synchronization, and reliable communication, are quite challenging to achieve with generic multi-hop communication protocols. This paper proposes two complementary reliable multi-hop communication solutions for monitoring of civil infrastructure. In the first approach, termed herein General Purpose Multi-hop (GPMH), the wide variety of communication patterns involved in structural health monitoring, particularly in decentralized implementations, are acknowledged to develop a flexible and adaptable any-to-any communication protocol. In the second approach, termed herein Single-Sink Multi-hop (SSMH), an efficient many-to-one protocol utilizing all available RF channels is designed to minimize the time required to collect the large amounts of data generated by dense arrays of sensor nodes. Both protocols adopt the Ad-hoc On-demand Distance Vector (AODV) routing protocol, which provides any-to-any routing and multi-cast capability, and supports a broad range of communication patterns. The proposed implementations refine the routing metric by considering the stability of links, exclude functionality unnecessary in mostly-static WSSNs, and integrate a reliable communication layer with the AODV protocol. These customizations have resulted in robust realizations of multi-hop reliable communication that meet the demands of structural health monitoring.

Design and Analysis of Lightweight Trust Mechanism for Accessing Data in MANETs

  • Kumar, Adarsh;Gopal, Krishna;Aggarwal, Alok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.1119-1143
    • /
    • 2014
  • Lightweight trust mechanism with lightweight cryptographic primitives has emerged as an important mechanism in resource constraint wireless sensor based mobile devices. In this work, outlier detection in lightweight Mobile Ad-hoc NETworks (MANETs) is extended to create the space of reliable trust cycle with anomaly detection mechanism and minimum energy losses [1]. Further, system is tested against outliers through detection ratios and anomaly scores before incorporating virtual programmable nodes to increase the efficiency. Security in proposed system is verified through ProVerif automated toolkit and mathematical analysis shows that it is strong against bad mouthing and on-off attacks. Performance of proposed technique is analyzed over different MANET routing protocols with variations in number of nodes and it is observed that system provide good amount of throughput with maximum of 20% increase in delay on increase of maximum of 100 nodes. System is reflecting good amount of scalability, optimization of resources and security. Lightweight modeling and policy analysis with lightweight cryptographic primitives shows that the intruders can be detection in few milliseconds without any conflicts in access rights.

Modeling and Stimulating Node Cooperation in Wireless Ad Hoc Networks

  • Arghavani, Abbas;Arghavani, Mahdi;Sargazi, Abolfazl;Ahmadi, Mahmood
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.77-87
    • /
    • 2015
  • In wireless networks, cooperation is necessary for many protocols, such as routing, clock synchronization, and security. It is known that cooperator nodes suffer greatly from problems such as increasing energy consumption. Therefore, rational nodes have no incentive to cooperatively forward traffic for others. A rational node is different from a malicious node. It is a node that makes the best decision in each state (cooperate or non-cooperate). In this paper, game theory is used to analyze the cooperation between nodes. An evolutionary game has been investigated using two nodes, and their strategies have been compared to find the best one. Subsequently, two approaches, one based on a genetic algorithm (GA) and the other on learning automata (LA), are presented to incite nodes for cooperating in a noisy environment. As you will see later, the GA strategy is able to disable the effect of noise by using a big enough chromosome; however, it cannot persuade nodes to cooperate in a noisefree environment. Unlike the GA strategy, the LA strategy shows good results in a noise-free environment because it has good agreement in cooperation-based strategies in both types of environment (noise-free and noisy).

Dynamic Threshold Method for Isolation of Worm Hole Attack in Wireless Sensor Networks

  • Surinder Singh;Hardeep Singh Saini
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.119-128
    • /
    • 2024
  • The moveable ad hoc networks are untrustworthy and susceptible to any intrusion because of their wireless interaction approach. Therefore the information from these networks can be stolen very easily just by introducing the attacker nodes in the system. The straight route extent is calculated with the help of hop count metric. For this purpose, routing protocols are planned. From a number of attacks, the wormhole attack is considered to be the hazardous one. This intrusion is commenced with the help of couple attacker nodes. These nodes make a channel by placing some sensor nodes between transmitter and receiver. The accessible system regards the wormhole intrusions in the absence of intermediary sensor nodes amid target. This mechanism is significant for the areas where the route distance amid transmitter and receiver is two hops merely. This mechanism is not suitable for those scenarios where multi hops are presented amid transmitter and receiver. In the projected study, a new technique is implemented for the recognition and separation of attacker sensor nodes from the network. The wormhole intrusions are triggered with the help of these attacker nodes in the network. The projected scheme is utilized in NS2 and it is depicted by the reproduction outcomes that the projected scheme shows better performance in comparison with existing approaches.