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In wireless networks, cooperation is necessary for many 
protocols, such as routing, clock synchronization, and 
security. It is known that cooperator nodes suffer greatly 
from problems such as increasing energy consumption. 
Therefore, rational nodes have no incentive to 
cooperatively forward traffic for others. A rational node is 
different from a malicious node. It is a node that makes 
the best decision in each state (cooperate or non-
cooperate). In this paper, game theory is used to analyze 
the cooperation between nodes. An evolutionary game has 
been investigated using two nodes, and their strategies 
have been compared to find the best one. Subsequently, 
two approaches, one based on a genetic algorithm (GA) 
and the other on learning automata (LA), are presented to 
incite nodes for cooperating in a noisy environment. As 
you will see later, the GA strategy is able to disable the 
effect of noise by using a big enough chromosome; 
however, it cannot persuade nodes to cooperate in a noise-
free environment. Unlike the GA strategy, the LA strategy 
shows good results in a noise-free environment because it 
has good agreement in cooperation-based strategies in 
both types of environment (noise-free and noisy). 
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I. Introduction 

Wireless networks suffer from environmental destructive 
phenomena, such as fading, blocking, and shadowing. To 
reduce the effects arising from these phenomena, methods 
under the title of diversity have been propounded and studied. 
In computer networks, diversity is a method for improving the 
quality of a signal and increasing the reliability of packet 
transfer. Different types of diversity have been propounded, 
such as space-time coding diversity and frequency diversity 
[1]–[6]. One of the profound methods in reducing the effect of 
the aforementioned phenomena is cooperative diversity (see 
also user cooperation diversity [7]–[8]), which has been studied 
in detail in [6]–[10]. In cooperative diversity, to achieve reliable 
communication and higher diversity gain, nodes share their 
antenna with each other. In fact, they create a system with 
virtual or distributed antenna diversity. 

Cooperative communication can provide increased capacity 
and power savings in ad hoc networks. Cooperative 
communications in wireless ad hoc networks have gained a lot 
of interest recently in the research community. Cooperation is 
used in routing protocols [11], clustering [12], localization [13], 
and other protocols. 

In this paper, the basic assumption is that the considered 
network includes a set of nodes that are assumed to be rational, 
autonomous, and selfish. A selfish node is a node that acts 
selfishly. A selfish node performs a function that leads to 
achieving a higher payoff [14] and prefers its advantages as 
opposed to those of the network. In essence, a selfish node does 
not feel inclined to forward the packets of other nodes because 
this leads to a use of its own resources (energy). Therefore, the 
main purpose of this paper is to provide a method that will 
stimulate selfish nodes to cooperate with each other so that they 
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may help to profoundly increase network throughput. 
There are few researches that focus on the behavior of selfish 

nodes in cooperative networks. For example, [15] has 
considered the behavior of selfish nodes in ad hoc networks 
and has discussed a trust and reputation mechanism that would 
stimulate cooperation between such nodes. 

In [16]–[23], by using virtual currency schemes and 
reputation-based schemes, rational nodes have been forced to 
cooperate with each other. 

To date, a lot of problems in wireless networks have been 
analyzed through game theory. Due to the similarities in the 
behavior of the nodes and their decision-making trends, [24] 
has analyzed the cooperation of nodes through game theory 
and the prisoner’s dilemma model. In [25], a prisoner’s 
dilemma game has been used to model the behavior of nodes 
in multi-hop wireless networks. The basic assumption in [14] 
and [25] is carried over in this paper; that is, we assume all 
nodes to be selfish and rational. 

In a wireless network in which cooperation is the founding 
principle behind many of its protocols, selfish nodes can 
decrease the overall performance of the network. Accordingly, 
the purpose of the proposed approach is summarized as 
follows: 
■  To model the behavior of nodes and their interactions with 

each other (cooperation and noncooperation) using game 
theory and an iterative prisoner’s dilemma (IPD) game [24]. 

■  To use a genetic algorithm (GA) and LRP learning automata 
(LA) to encourage the nodes to cooperate with each other. 
The reminder of this paper is organized as follows. The main 

problem is stated in Section II. Section III is devoted to 
describing the IPD game and evolutionary games, as well as 
evaluating several well-known solutions to the IPD game in the 
field of social and economics science. Section IV will present 
the GA- and LA-based approaches, whereby we can 
encourage the nodes to cooperate with each other. In Section V, 
we consider the domino effect, which is a chain reaction; that is, 
when a small change instigates a continuing chain of similarly 
small changes. 

II. Problem Definition 

As we mentioned in the previous section, environmental 
destructive phenomena have harmful effects on the 
performance of wireless networks, and cooperative diversity 
can reduce the impact of such effects. In this method, if a direct 
communication between two nodes is not possible, then these 
nodes can communicate with each other through their 
neighbors. For further explanation, let us now consider Fig. 1. 
Suppose that node i wishes to send a data packet to node Di. 
Because of the obstacle between the two nodes, it is not  

 

Fig. 1. Node i needs node j’s cooperation. 
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possible to send it directly. Cooperative diversity suggests that 
node j can act as a relay node, which means that it receives the 
data packet sent from i and then forwards it toward Di. 

 As we know, in a traditional network, node j has to 
cooperate with node i. The modeling and monitoring of the 
behavior of autonomous nodes in a nontraditional network   
is our main goal in this paper. A nontraditional network 
comprises autonomous nodes that behave rationally. An 
autonomous node is a node that independently decides about 
its own actions, no matter its status. It should also be noted that 
a rational node is a type of selfish node, since it always chooses 
the action that is most beneficial to it from those that are 
available (that is, cooperate or non-cooperate). In other words, 
a rational node prefers its own profit over that of the network. 

The main challenge in such networks is the cost of 
cooperation. It is obvious that helping node i incurs costs to 
cooperative node j. This cost is a function of the power 
consumed in forwarding the packet of node i. Although it will 
be low, node j — which is assumed to be autonomous and 
rational — will be discouraged from cooperating. In such a 
nontraditional network, nodes do not cooperate with each other 
because it is inconsistent with the assumption that all nodes are 
autonomous and rational.  

On the other hand, as a consequence of the high volume of 
interactions between nodes in a network, a situation could arise 
whereby node j requires node i’s assistance. However, once 
again, because of the assumption that all nodes are autonomous 
and rational, node i will be discouraged from cooperating 
(Consider Fig. 2). In this scenario, for similar reasons, 
forwarding data packets from node j to Dj is not possible 
directly. Now, it has been expected that node i compensates 
node j’s behavior in the previous scenario, but the decision 
whether to cooperate is not that simple for node i, because the 
scenario explained in Fig. 1 may happen again (that is, it may 
require node j’s assistance once again). 

As we mentioned above, the basic assumption in this paper 
is that the considered network includes a set of rational and 
autonomous nodes that always perform an action that benefits  
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Fig. 2. Node j needs node i’s cooperation. 
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them. In a wireless network in which cooperation is the 
foundation of many protocols, this behavior will decrease the 
network’s performance.  

III. IPD Game, Evolutionary Games, and Strategies 

Game theory is a bag of analytical tools designed to help us 
understand the phenomena that we observe when decision-
makers interact. The basic assumptions that underlie the theory 
are that decision-makers pursue well-defined exogenous 
objectives (they are rational) and that they take into account 
their knowledge or expectations of other decision-makers’ 
behavior (they reason strategically) [24]. 

The main characteristic of making a “decision” in a game is 
that before players select and make a choice, they should 
analyze the reactions to the potential choices of the other game 
players, and then having done so, the players making the 
decisions should choose the ones best suited to them based 
upon the potential reactions [26]. An environment in which 
there is such a reciprocal effect and reaction among individuals’ 
decisions, is called a strategic environment. 

1. IPD Game 

The IPD game, which has been studied in [27]–[32], is an 
example of a non-zero sum game. In non-zero sum games, the 
profit of one player does not necessarily incur a loss to the other, 
and in some situations, it may be the case that both of them 
may profit. It has been considered that cooperation can be 
ascertained only in non-zero sum games, because only in such 
games can we expect more points for all players who 
participate in a cooperation. In other words, all players can gain 
more points through cooperation. The best way to illustrate the 
cooperation of two players is to use the IPD game. In the IPD 
game, there are two players. Each has two choices; namely, 
cooperate (C) or defect (D). Each player should make their 
choice without knowing what the other will do. No matter 
what the other one does, defection yields a higher payoff than  

Table 1. Payoff matrix. 

 D C 

D P, P T, S 

C S, T R, R 

 

Table 2. Normalized payoff matrix. 

 D C 

D 0, 0 α, –β 

C –β, α α – β, α – β 

 

 
cooperation. This results in a dilemma, for if both players 
defect, then they will both lose out. This simple model game 
will provide the basis for the entire analysis used in this paper. 

A game is shown in Table 1. One player chooses a      
row, either cooperating or defecting. The other player 
simultaneously chooses a column, either cooperating or 
defecting. Together these choices result in one of the four 
possible outcomes shown in this table. If both players 
cooperate, then both do fairly well and get R points, which is 
the reward for mutual cooperation. If one player cooperates, 
but the other defects, then the defecting player gets T points, 
while the other gets S points. If both defect, then both get P 
points. 

The payoff matrix of for the IPD game must satisfy the 
following two conditions related to the payoff values for 
different actions: 

■ T > R > P > S. 

■ 2 × R > (T + P). 

It is obvious that irrespective of what their partner chooses, a 
player always has an incentive to choose D over C. Thus, this 
game has a unique steady-state equilibrium solution or Nash 
equilibrium, [33], which is (D, D). In game theory, the Nash 
equilibrium is a solution concept of a game involving two or 
more players, in which each player is assumed to know the 
equilibrium strategies of the other players, and no player has 
anything to gain by changing their own strategy unilaterally. If 
each player has chosen a strategy and no player can benefit by 
changing his or her strategy while the other players keep theirs 
unchanged, then the current set of strategy choices and the 
corresponding payoffs constitute a Nash equilibrium. 

In wireless ad hoc networks, each node has to decide 
whether to forward or drop packets belonging to other nodes. 
Since forwarding packets consumes a node’s energy, this cost 
is considered as β. Furthermore, when a node’s packet is 
relayed by its neighbor, it receives α points as the reward (see 
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Table 2). As in [14], here it is assumed that any two neighbors 
have uniform network traffic and that any two nodes can send 
packets to each other while simultaneously deciding whether to 
forward or drop any that they may be about to receive. This 
decision-making process is repeated multiple times by all 
nodes in the system. 

Now, we move on to consider a simplified situation. 
Consider a packet-relaying game that is divided into n rounds. 
This packet-relaying game is the same as the repeated IPD 
game. It is played several times, and in each round, actions and 
outcomes of previous rounds are observable. In these games, 
by considering the history of the opponent’s actions, players are 
encouraged to cooperate with each other. 

2. Evolutionary Games 

Evolutionary games have been applied most widely in the 
area of evolutionary biology — the domain in which the idea 
was first articulated by J.M. Smith and G.R. Price. 
Evolutionary games are based on the idea that the strategy that 
best fits a given scenario will be the one to produce more 
offspring. 

Suppose there are M strategies in an environment. At 
generation n, each strategy is represented by a certain number 
of players; that is, as Wn(Si), where Si is one of the M strategies 
and Wn(Si) represents the number of players (nodes) playing 
strategy Si in the nth generation. 

The score of strategy Si when it plays with strategy Sj is 
represented by V(Si|Sj). This score is calculated from Table 1. 
Equation (1), below, is used for computing each strategy’s 
score. The score of strategy Si at the end of generation n is 
denoted by gn(Si). 
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( | ) () | .( ) ( )

Mn n
i j i j i ij

g S W S V S S V S S


      (1) 

The size of strategy Si in the (n + 1)th generation, Wn+1(Si), is 
determined by its score in the nth generation. 
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3. Strategies 

A strategy is an algorithm that determines what should be 
done by each player in any game. The objective of each 
strategy is to get more points for its player. A player’s strategy 
in game theory refers to one of the actions he can choose in a 
setting where the outcome depends not only on his own actions 
but on the actions of others, and it will determine the action the 
player will take at any stage of the game. 

A strategy profile (sometimes called a strategy combination) 

is a set of strategies for each player, which fully specifies all 
actions in a game. A strategy profile should include one, and 
only one, strategy for every player. The strategy concept is 
sometimes wrongly confused with the concept of a move. A 
move is an action taken by a player at some point during the 
play of a game; (for example, in chess, moving White’s Bishop 
from a2 to b3). On the other hand, a strategy is a complete 
algorithm for playing the game and guides a player toward 
what to do in every possible situation throughout the game. 

A. Tit for Tat 

Tit for tat (TFT) is probably the most studied strategy in 
game theory [14]. A player using this strategy will initially 
cooperate and then respond in kind to an opponent’s previous 
action. If the opponent was previously cooperative, then the 
player will cooperate; otherwise, he will not. TFT was 
submitted by Anatol Rapaport in Axelrod’s Tournament, in 
1984. If a player continually uses a TFT strategy, then the 
player cannot score higher or lesser than its playing partner. It 
means TFT doesn’t win or lose in any repeated game. 

B. Gradual 

In gradual strategy, a player uses cooperation on the first 
move and then continues to do so as long as its opponent 
cooperates. Then, after the first defection of the opponent, it 
defects once and cooperates twice; after the second defection of 
the opponent, it defects twice and cooperates twice, and so on 
and so forth, until after the Nth defection it reacts with N 
consecutive defections and then calms its opponent down by 
cooperating twice [14]. 

C. ALLC Strategy 

ALLC strategy is a strategy that cooperates in all games. 
ALLD strategy is a strategy that defects in all games, and in 
every game, random strategy selects one of the actions 
(cooperation or defection) with equal possibility. 

D. Optimal Strategy 

It is much less obvious as to what constitutes an optimal 
strategy or even how an optimal strategy should be defined [34]. 
The question of what makes a strategy optimal in the IPD 
game is very difficult to answer. As many researchers have 
noted, the performance of a strategy is highly dependent on 
which other strategies it interacts with. This has led to several 
conflicting definitions of the term “optimality,” with resulting 
differences in which strategies (if any) are considered optimal. 
According to this, optimality has been defined relative to a 
given set of opponents: the optimal strategy is the one that 
achieves the highest score (with respect to some measure) 
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against that set of opponents. One typical measure of 
performance is the average score in a round-robin tournament 
interaction. In reality, there is no fixed strategy that performs 
best against every given set of opponents in this type of 
interaction, because achieving optimality requires the 
forecasting of opponents’ actions before they act, and this is 
impossible [34]. So, the problem that we consider in this paper 
is to find a suboptimal strategy that will ensure victory in a 
packet-relaying tournament. 

A good strategy is one that allows a player to remain alive in 
the population for the longest possible time and in the biggest 
possible proportion [35]. In evolutionary games, such a 
strategy is called an evolutionary stable strategy (ESS). A 
strategy is an ESS when the whole of the population is using 
this strategy. Any small group of invaders using a different 
strategy will eventually die off over multiple generations [24]. 

A strategy can be suboptimal provided that it has four 
characteristics [14]. These characteristics are as follows:  
■ It should begin by cooperating; that is, it is good. 
■ It should be able to retaliate; that is, it can return an 

opponent’s defection. 
■ It should be generous; that is, it forgets the past if the 

defecting opponent cooperates again. 
■ It should not be memory-less; that is, it utilizes its interaction 

history. 

IV. Proposed Strategies 

To be optimal, a strategy should have the ability to predict. In 
other words, before playing with a strategy, a player should 
know the method of every strategy. For example, before 
playing with a TFT strategy, a player should know how to 
interact with this strategy to have the best play, which in this 
case is cooperation. As we have already said, planning such a 
strategy is impossible, but instead of predicting, a method   
can be suggested that tries to identify the behavior of the 
opponent’s strategy by playing several games. In other words, 
our proposed strategies, which are based on GA and LA, try to 
perform several games and study the consequences arising 
from each game. Then, they analyze the behavior of the 
opponent’s strategy and gradually incline toward the best 
performance in each game. 

1. GA Strategy 

In [36] and [37], a GA has been investigated completely. A 
GA is a heuristic search that mimics the process of natural 
evolution. This heuristic search is routinely used to generate 
useful solutions for optimization and search problems. 

GAs belong to a larger class of algorithms called 

evolutionary algorithms which generate solutions to 
optimization problems using techniques inspired by natural 
evolution, such as inheritance, selection, cross over, and so on. 

A. GA and IPD 

The important thing in solving IPD by GA is how to 
formulate the problem. Two genes have been supposed to exist 
in a game environment. One is cooperation, and the other is 
defection. Cooperation and defection are respectively indicated 
by a value of “0” and “1.” An initial population consists of two 
chromosomes. We believe that the behavior of any particular 
given strategy should finally be inclined to either absolute 
cooperation or absolute defection. As a result, two 
chromosomes with a length of 16 genes are considered. One of 
them comprises all 0s, and the other comprises all 1s; that is, 
we have 0000000000000000 and 1111111111111111. The 
length of the chromosomes dictates the number of games that 
are spent analyzing the behavior of the opponent’s strategy. 
Then, the proposed strategy plays with the above two 
chromosomes, which means that it continuously cooperates for 
16 plays (the first chromosome) and then continuously does 
not cooperate for 16 plays (the second chromosome). The 
obtained score by each chromosome will be computed based 
on a fitness function. The fitness function that has been used 
here is the same as that in the game table of the prisoner’s 
dilemma. Now, intercourses should be done. To choose two 
parents for intercourse, the elicit selection and roulette wheel 
methods have been used. The elicit method selects the best 
chromosome as one of the parents. The best chromosome is the 
one that has obtained the higher score. In the roulette wheel 
method, a chromosome’s score dictates the probability that it is 
chosen. Finally, by these two methods, two parents will be 
chosen for generating future chromosomes. 

A simple method, known as the one point crossover, has 
been used for generating new children. In this method, the 
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genes within either parent’s chromosome are subject to 
exchange with one another (swap) at a random point within the 
given sequences. Figure 3 shows an example of a possible 
intercourse between two parents’ chromosomes comprising 
eight genes. The proposed algorithm continues playing with 
the children’s chromosomes. Then, the score of each 
chromosome is computed again, and the algorithm enters into a 
new phase of selecting new parents and generating new 
children. This process then continues repeatedly. 

B. Simulation Results 

One way of finding a superior strategy is to hold competitive 
interactions among strategies. At the end of every repetition, 
based on the evolutionary games law [(1) and (2)], the 
populations of superior strategies will increase and the 
populations of weak strategies will be decreased; thus, the 
upshot of this will be that the weak strategies will eventually 
leave the game as their generation becomes extinct. If a weak 
strategy is not able to gain a high payoff, then the population to 
which it belongs will decrease.  

In the simulation phase, a fully connected network with 600 
rational nodes is considered. IPD involves two players, and in a 
fully connected network with 600 nodes, (600×599)/2 = 
17,970 games per each generation will be held to find the best 
strategy. 

The network topology, packet size, energy, and so on do not 
influence a node’s behavior when playing an IPD game. The 
following six strategies are to be used in the simulation: TFT, 
ALLC, ALLD, Random, Gradual, and GA. It is obvious that 
superior genes that obtain more scores will be in the later-
generation chromosomes. 

At first, no node knows the superior strategy; therefore, each 
node selects one of the strategies randomly and plays 
accordingly. So, it is assumed that an equal number of nodes 
will use each of the aforementioned six strategies in the first 
phase. When two nodes are playing the packet-relaying game, 
after each round, they should be aware of each other’s actions. 

It is supposed that each node becomes aware of the opposite 
node’s behavior by a central or distributed mechanism. So, the 
correctness of the information provided by this mechanism is 
important because strategies like TFT and Gradual adjust their 
behavior based on this information. 

An important feature of interactions in the real world is that 
choices cannot be implemented without error because the other 
player does not necessarily know whether a given action is an 
error or a deliberate choice. Noise, in the form of random errors, 
in implementing a choice is common in real-world interactions. 

To date, different methods have been suggested for playing 
in noise-free environments, and these methods have often been 
successful, but playing in a noisy environment poses many  

 

Fig. 4. Simulation with noise ratio β = 0%. 
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Fig. 5. Simulation with noise ratio β = 5%. 
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challenges, and as of yet, no comprehensive solution has been 
suggested for such a case. In [37] and [38], some approaches 
related to noisy environments have been investigated. 

A noisy environment is one that makes use of an informing 
mechanism that contains some error. For example, consider 
two nodes, i and j, which are playing the packet-relaying game. 
If the environment has a noise rate, say Ф, then it means that 
the action of each node with possibility of Ф is inversely 
informed to its opposite node. Figs. 4, 5, 6, and 7 show the 
results of holding the above tournament in both a noise-free 
environment and a noisy environment, with noise rates of 0%, 
5%, 10%, and 20%, respectively. An interesting point here is 
that the GA strategy in an environment with a noise rate of 
20% will act better than in an environment with less noise ratio, 
and unfortunately, it doesn’t work well in a noise-free 
environment at all. 

The reason for this is because as the noise ratio of an 
environment increases, the circumstances under which a 
strategy can survive become harsher, and so some strategies 
will ultimately be forced to leave the game environment. Thus, 
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Fig. 6. Simulation with noise ratio β = 10%. 
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Fig. 7. Simulation with noise ratio β = 20%. 
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when there is uncertainty in a node’s behavior because of noise 
existence, then the GA strategy helps its user to take more 
benefits and coexist together. This may cause a faster growth in 
the population of GA strategy. The main reason for the success 
of the GA strategy in a noisy environment relates to the length 
of a chromosome, because it is considered to be comparatively 
longer than those chromosomes belonging to other strategies; 
thus, the strategy is exerted on a lot of games. Therefore, the 
appearance of noise has no great effect on the sum of a 
chromosome’s scores. 

2. LA Strategy 

A. LA and IPD 

As mentioned before, it is impossible to achieve an optimal 
strategy, but the expectation of finding a way to estimate the 
behavior of an opponent’s strategy is not illogical. Learning is a 
process, and living beings need it for making changes in   
their behavior and being compatible with the environment. 
Stochastic LA is a decision-making algorithm that acts in a 

stochastic environment and updates its strategy for the next 
action based on the response that it gets from an interaction 
with the environment. 

LA doesn’t know the environment at the beginning of the 
game; therefore, it tries to learn of it through a process of trial 
and error. So, at first, it performs actions randomly. The 
environment of the game (here is the opposite strategy) reacts 
in front of each action, and LA reduces or increases the 
possibility of performing this action based on the amount of 
desirability or undesirability of it before the next game begins 
[39]. 

The environment of the game is defined by (α, c, β), where α 
is the sum of the actions that the automata can perform. It’s 
evident that, in the mentioned environment, α equals {C, D}, 
where “C” means cooperation and “D” means defection. Set c 
is the set of all possible penalties, provided that an action is 
performed from the set of actions. The set β is determined by 
taking into consideration the proportions for penalty and 
reward outlined in Table 1. 

Based on Fig. 8, the reactions of the environment to the 
behavior of the automata comprise the set β = {S, P, R, T}. The 
members of this set allocate amounts from the interval [0, 1] to 
themselves. For this reason, the reactions of environment are 
divided by X, where X = S + P + R + T. So, the set of reactions  

of the environment are defined as
 

{ , , , }
S P R T

X X X X
  . 

In continuation, an indicator is needed to determine the 
desirability of the reactions of the environment. It is known that 
if two nodes make an effort to delete each other’s packets, then 
they have neither profit nor loss (obtaining score P). A node 
will profit when its opposite node directs its packet (obtaining 
score R or T). So, a desirable action is one that offers a 
potential score (the reaction of the environment) that is greater 
than P, and an undesirable action is one that offers a potential 

 

 

Fig. 8. Environment response to behavior of automata. 
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Fig. 9. Evaluating desirability of responses of environment. 
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Fig. 10. Learning automata pseudo code (LRP). 

if (Pi(n)) had a good response) then  

Pi(n + 1) = Pi(n) + Reward × (1 – Pi(n)) 

P–i(n + 1) = (1 – Reward) × P – i(n) 

else 

Pi(n + 1) = (1 – Penalty) × Pi(n) 

P – i(n + 1) = Penalty + (1 – Penalty) × P – i(n) 

 
 

Table 3. Determining amount of penalty and reward. 

Action Bad response Good response 

C (S – P)/X (R – P)/X 

D (P – P)/X (T – P)/X 

 

 
score that is less than P. The amount of desirability and 
undesirability is dependent on the difference between an 
action’s score and that of the value P (see Fig. 9). 

Considering the above, the number of members in set β is 
limited and kept in the interval [0, 1]. The model of the game’s 
environment is that of the Q model. We have used LRP 
automata for updating the possibility of performing the actions 
of the set of automata’s actions. This is because we believe that 
an automata can be victorious when it rewards or fines its 
action with every reaction that it receives from the environment, 
because only in such a situation can it be possible to confront 
malevolent strategies, such as ALLD. If PC(n) is considered as 
the possibility of performing function C in the nth game and 
PD(n) as the possibility of performing function D in the nth 
game, then the following pseudocode (see Fig. 10) shows the 
trend of updating each of the above possibilities, where i is the 
action that the automata has performed in the nth game 
( )i   and –i represents the other actions of the members of 
set α. 

The important problem is determining the amounts of 
reward and penalty. As mentioned before, the amount of 
desirability of the received reactions determines the amount of 
reward or penalty, which is allocated to the action that is done. 
Table 3 shows the amount of reward or penalty for each action 
that is performed. 

B. Simulation Results 

The game will be held using six strategies — TFT, ALLC, 
ALLD, Random, Gradual, and LA. As previously mentioned, 
a fully connected network is considered, where for every 100 
nodes, each node must choose one, and only one, of the six 
aforementioned strategies. Each node plays the IPD game with 
all of the other nodes, and after an iterative game, each strategy  

 

Fig. 11. Simulation with noise ratio β = 0%. 
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Fig. 12. Simulation with noise ratio β = 5% 
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calculates its payoff. Then, to find the best strategy, the 
population of each strategy will be computed based on (2). We 
remind the reader here that network topology, packet size, 
energy, and so on do not influence a node’s behavior during the 
course of the game. 

Figures 11, 12, 13, and 14 show the results of holding the 
tournament in the aforementioned environment. As can be seen 
from Fig. 11, the generation of unintelligent strategies (that is, 
ALLD, ALLC, and Random) has disappeared and left the 
competition early. The LA strategy has the highest population, 
followed respectively by the Gradual and TFT strategies. This 
means that the LA strategy has prevailed over all of the other 
strategies. The reason for the failure of the other strategies, like 
Gradual and TFT, is that, at the time of making a decision, they 
make use of only a single criterion (that is, they make use of 
only the event that happened in the last game), while LA 
considers multiple criterion — that being, recent games. In a 
noise-free environment, the LA strategy incites rational nodes 
to cooperate; thus, network throughput will be increased. 

Figures 12, 13, and 14 show the simulation results for noise 
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Fig. 13. Simulation with noise ratio β = 10%. 
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Fig. 14. Simulation with noise ratio β = 20%. 
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ratios of 5%, 10%, and 20%, respectively. As mentioned in the 
previous section, the only difference between a noise-free 
environment and a noisy environment is the existence of some 
error within the notification mechanism. 

It can be seen that there is no resistance strategy that works 
well in noisy environments, and this encourages nodes to 
cooperate with each other. Simulations were also performed 
under other noise ratios. With increasing noise, cooperative 
strategies are affected more than other strategies; thus, for high 
noise ratios, all rational nodes are inclined toward adopting the 
ALLD strategy. This means that when nodes do not have 
enough correct information about the behavior of other nodes, 
they prefer noncooperation. 

V. Conclusion 

In this paper, we first presented and surveyed a model for 
cooperation among nodes. The model originates from game 
theory and attempts to solve one of the classical puzzles from 
this domain; that is, it shows the intentions of rational nodes 

when they are in cooperation with each other. A rational node is 
a node that performs a function to increase its profit. Following 
this, repetitive and evolutionary games were explained, and we 
concluded that one way to find a superior strategy is to hold a 
tournament between nodes. Then, we studied the profound 
strategies within this domain and concluded that a 
comprehensive method for playing a game in a noisy 
environment has not yet been proposed. Finally, by presenting 
a strategy based on a genetic algorithm, it has been shown that 
the effect of noise in a game can be prevented. 
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