• Title/Summary/Keyword: Ad hoc Wireless Network

Search Result 712, Processing Time 0.028 seconds

A Study on Hierarchy-based Secure Encryption Protocol for Trust Improvement on Multicast Environment of MANET (MANET의 멀티캐스트 환경에서 신뢰성 향상을 위한 계층기반 암호 프로토콜 기법 연구)

  • Yang, Hwanseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.43-51
    • /
    • 2017
  • MANET consists of only wireless nodes having limited processing capability. It processes routing and data transmission through cooperation among each other. And it is exposed to many attack threats due to the dynamic topology by movement of nodes and multi-hop communication. Therefore, the reliability of transmitted data between nodes must be improved and security of integrity must be high. In this paper, we propose a method to increase the reliability of transmitted data by providing a secure cryptography protocol. The proposed method used a hierarchical structure to provide smooth cryptographic services. The cluster authentication node issues the cluster authentication key pair and unique key to the nodes. The nodes performs the encryption through two steps of encryption using cluster public key and block encryption using unique key. Because of this, the robustness against data forgery attacks was heightened. The superior performance of the proposed method can be confirmed through comparative experiment with the existing security routing method.

Fault Tolerant Mechanism in Dynamic Multi-homed IPv6 Mobile Networks (IPv6 기반 동적인 이동 네트워크에서의 Fault Tolerant 메커니즘)

  • Jang, Jung-Gyu;Kim, Won-Tae;Park, Yong-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10d
    • /
    • pp.690-694
    • /
    • 2006
  • 동적인 이동 네트워크는 다중의 무선 Ad-hoc 네트워크들로 구성된 독립적인 WPAN(Wireless Personal Network)이 모인 이동 네트워크의 한 종류이다. 휴대폰과 같은 모바일 장치들이 동적인 이동 네트워크에서 모바일 라우터로 동작하기 때문에 트래픽 과부하, 네트워크 신뢰도, 에너지 소모율 등의 네크워크 fail과 관련된 문제점 들이 제시된다. 따라서 동적인 이동 네트워크에서 fault tolerant 메커니즘은 필수적인 이슈가 될 것이다. 본 논문에서는 빠른 경로 변경 메커니즘과 추가적인 모바일 라우터 선정 메커니즘을 이용하여 향상된 fault tolerant 메커니즘을 제시한다. 최종적으로 모의실험을 통해 에너지 소모율과 패킷 손실 측면에서의 효율성을 보여줄 것이다.

  • PDF

Sector Tracking System for Moving Object using Magnetic Sensor in Wireless Sensor Network (무선 센서네트워크를 이용한 자성체의 구역 추적 시스템)

  • 김영만;김광훈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.238-240
    • /
    • 2004
  • 인간과 컴퓨터와 사물이 유기적으로 연계되어 다양하고 편리한 새로운 서비스를 제공해 주는 유비쿼터스 컴퓨팅 환경에서, 외부 환경의 감지와 제어 기능을 수행하는 센서 네트워크 기술이 최근 활발히 연구가 되고 있다. 이러한 센서 네트워크 기술은 저전력 저가격의 무선 통신 기술, 초소형 마이크로 프로세서 기술, 자동구성 이 가능한 ad-hoc 네트워크 기술, MEMS기술, 다양한 종류의 센서들과 이들의 표준화 노력, 그리고 임베디드 시스템 기술등의 발전으로 실현이 가능한 기술로서 평가되고 있다. 본 논문에서는 무선 센서 노드인 MICA2[1]와 자기장센서 HMC1002[2]를 이용하여 자기장의 변동을 감지하여 자성체의 위치를 파악하는 시스템의 설계 및 구현을 다룬다.

  • PDF

A Slot Based Multi-channel MAC Protocol for Wireless Ad hoc Network (무선 애드혹 네트워크에서 슬롯방식을 이용한 멀티채널 MAC 프로토콜)

  • Kim Sung-Chan;Ko Young-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.289-291
    • /
    • 2005
  • 무선 애드혹 네트워크에서 주로 사용되는 IEEE 802.11은 모든 노드가 하나의 채널을 공유하기 때문에 높은 throughput을 기대하기 어렵다. 이러한 문제를 해결하기 위해 여러 채널을 동시에 사용하는 멀티채널 기반의 MAC 프로토콜이 제안되었다. 그러나 기존의 멀티 채널 기반 MAC 프로토콜은 멀티채널을 사용함에도 불구하고 각 노드들이 서로간의 경쟁을 통해 데이터를 전승하기 때문에, 데이터 트래픽이 증가하는 경우 throughput이 급격하게 감소한다. 따라서 본 논문에서는 데이터의 전송시간을 일정한 시간으로 나누어 노드들간의 경쟁을 방지함으로써 throughput을 향상시키는 슬롯 기반의 멀티채널 MAC 프로토콜 (Slotted MMAC)을 제안한다.

  • PDF

CRP-CMAC: A Priority-Differentiated Cooperative MAC Protocol with Contention Resolution for Multihop Wireless Networks

  • Li, Yayan;Liu, Kai;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2636-2656
    • /
    • 2013
  • To improve the cooperative efficiency of node cooperation and multiple access performance for multihop wireless networks, a priority-differentiated cooperative medium access control protocol with contention resolution (CRP-CMAC) is proposed. In the protocol, the helper selection process is divided into the priority differentiation phase and the contention resolution phase for the helpers with the same priority. A higher priority helper can choose an earlier minislot in the priority differentiation phase to send a busy tone. As a result, the protocol promptly selects all the highest priority helpers. The contention resolution phase of the same priority helpers consists of k round contention resolution procedures. The helpers that had sent the first busy tone and are now sending the longest busy tone can continue to the next round, and then the other helpers that sense the busy tone withdraw from the contention. Therefore, it can select the unique best helper from the highest priority helpers with high probability. A packet piggyback mechanism is also adopted to make the high data rate helper with packet to send transmit its data packets to its recipient without reservation. It can significantly decrease the reservation overhead and effectively improve the cooperation efficiency and channel utilization. Simulation results show that the maximum throughput of CRP-CMAC is 74%, 36.1% and 15% higher than those of the 802.11 DCF, CoopMACA and 2rcMAC protocols in a wireless local area network (WLAN) environment, and 82.6%, 37.6% and 46.3% higher in an ad hoc network environment, respectively.

A Dynamic Pre-Cluster Head Algorithm for Topology Management in Wireless Sensor Networks (무선 센서네트워크에서 동적 예비 클러스터 헤드를 이용한 효율적인 토폴로지 관리 방안에 관한 연구)

  • Kim Jae-Hyun;Lee Jai-Yong;Kim Seog-Gyu;Doh Yoon-Mee;Park No-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6B
    • /
    • pp.534-543
    • /
    • 2006
  • As the topology frequently varies, more cluster reconstructing is needed and also management overheads increase in the wireless ad hoc/sensor networks. In this paper, we propose a multi-hop clustering algorithm for wireless sensor network topology management using dynamic pre-clusterhead scheme to solve cluster reconstruction and load balancing problems. The proposed scheme uses weight map that is composed with power level and mobility, to choose pre-clusterhead and construct multi-hop cluster. A clusterhead has a weight map and threshold to hand over functions of clusterhead to pre-clusterhead. As a result of simulation, our algorithm can reduce overheads and provide more load balancing well. Moreover, our scheme can maintain the proper number of clusters and cluster members regardless of topology changes.

Development of Clustering-Based Multi-Channel MAC Protocol to Improve Efficiency of Network in VANET (차량 환경에서 통신 효율 향상을 위한 클러스터링 기반의 멀티채널 매체접속제어 프로토콜 개발)

  • Jung, Sung-Dae;Lee, Seung-Jin;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.463-468
    • /
    • 2009
  • In VANET(Vheicle Ad hoc Network), the researches based on the wireless LAN are conducting and the method based on 802.11a is being adapted in IEEE 802.11p WAVE(Wireless Access in Vehicular Environments). However, wireless LAN which uses a single channel in a competition can cause transmission delays because of a frequent collision and a use of CSMA/CA to avoid competition in VANET requiring a fast access. In this paper, we designed CMMP (Clustering based Multi-channel MAC protocol) adequate to VANET and then confirmed the appropriate channel conditions in a V2V communication on the basis of this protocol. The simulation results showed that a packet collision and a transmission delay by the use of an existing single channel based on the contention decreased more than 60% by CMMP.

Design of Stochastic Movement Model Considering Sensor Node Reliability and Energy Efficiency

  • Cho, Do-Hyeoun;Yeol, Yun Dai;Hwang, Chi-Gon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.156-162
    • /
    • 2020
  • Wireless Sensor Network (WSN) field is mainly studied to monitor and characterize large-scale physical environments to track various environmental or physical conditions, such as temperature, pressure, wind speed and humidity. WSN can be used in various applications such as wild surveillance, military target tracking and monitoring, dangerous environmental exploration and natural disaster relief. We design probabilistic mobile models that apply to mobile ad hoc network mobile environments. A probabilistic shift model proposed by dividing the number of moving nodes and the distance of travel into two categories to express node movement characteristics. The proposed model of movement through simulation was compared with the existing random movement model, ensuring that the width and variation rate of the first node node node node (FND) was stable regardless of the node movement rate. In addition, when the proposed mobile model is applied to the routing protocol, the superiority of network life can be verified from measured FND values. We overcame the limitations of the existing random movement model, showing excellent characteristics in terms of energy efficiency and stable in terms of changes in node movement.

Delay Tolerant Packet Forwarding Algorithm Based on Location Estimation for Micro Aerial Vehicle Networks

  • Li, Shiji;Hu, Guyu;Ding, Youwei;Zhou, Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1377-1399
    • /
    • 2020
  • In search and rescue mission, micro aerial vehicles (MAVs) are typically used to capture image and video from an aerial perspective and transfer the data to the ground station. Because of the power limitation, a cluster of MAVs are required for a large search area, hence an ad-hoc wireless network must be maintained to transfer data more conveniently and fast. However, the unstable link and the intermittent connectivity between the MAVs caused by MAVs' movement may challenge the packet forwarding. This paper proposes a delay tolerant packet forwarding algorithm based on location estimation for MAV networks, called DTNest algorithm. In the algorithm, ferrying MAVs are used to transmit data between MAVs and the ground station, and the locations of both searching MAVs and ferrying MAVs are estimated to compute the distances between the MAVs and destination. The MAV that is closest to the destination is selected greedy to forward packet. If a MAV cannot find the next hop MAV using the greedy strategy, the packets will be stored and re-forwarded once again in the next time slot. The experiment results show that the proposed DTNest algorithm outperforms the typical DTNgeo algorithm in terms of packet delivery ratio and average routing hops.

Analysis of MANET Protocols Using OPNET (OPNET을 이용한 MANET 프로토콜 분석)

  • Zhang, Xiao-Lei;Wang, Ye;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.87-97
    • /
    • 2009
  • A Mobile Ad hoc Network (MANET) is characterized by multi-hop wireless connectivity, frequently changing network topology with mobile nodes and the efficiency of the dynamic routing protocol plays an important role in the performance of the network. In this paper, the performance of five routing protocols for MANET is compared by using OPNET modeler: AODV, DSR, GRP, OLSR and TORA. The various performance metrics are examined, such as packet delivery ratio, end-to-end delay and routing overhead with varying data traffic, number of nodes and mobility. In our simulation results, OLSR shows the best performance in terms of data delivery ratio in static networks, while AODV has the best performance in mobile networks with moderate data traffic. When comparing proactive protocols (OLSR, GRP) and reactive protocols (AODV, DSR) with varying data traffic in the static networks, proactive protocols consistently presents almost constant overhead while the reactive protocols show a sharp increase to some extent. When comparing each of proactive protocols in static and mobile networks, OLSR is better than GRP in the delivery ratio while overhead is more. As for reactive protocols, DSR outperforms AODV under the moderate data traffic in static networks because it exploits caching aggressively and maintains multiple routes per destination. However, this advantage turns into disadvantage in high mobility networks since the chance of the cached routes becoming stale increases.

  • PDF