• Title/Summary/Keyword: Acute myeloid leukemia (AML)

Search Result 86, Processing Time 0.023 seconds

MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis

  • Wang, Zhiguo;Luo, Hong;Fang, Zehui;Fan, Yanling;Liu, Xiaojuan;Zhang, Yujing;Rui, Shuping;Chen, Yafeng;Hong, Luojia;Gao, Jincheng;Zhang, Mei
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.444-449
    • /
    • 2018
  • Acute myeloid leukemia (AML) is one of the most common hematological malignancies all around the world. MicroRNAs have been determined to contribute various cancers initiation and progression, including AML. Although microRNA-204 (miR-204) exerts anti-tumor effects in several kinds of cancers, its function in AML remains unknown. In the present study, we assessed miR-204 expression in AML blood samples and cell lines. We also investigated the effects of miR-204 on cellular function of AML cells and the underlying mechanisms of the action of miR-204. Our results showed that miR-204 expression was significantly downregulated in AML tissues and cell lines. In addition, overexpression of miR-204 induced growth inhibition and apoptosis in AML cells, including AML5, HL-60, Kasumi-1 and U937 cells. Cell cycle analysis further confirmed an augmentation in theapoptotic subG1 population by miR-204 overexpression. Mechanistically, baculoviral inhibition of apoptosis protein repeat containing 6 (BIRC6) was identified as a direct target of miR-204. Enforcing miR-204 expression increased the luciferase activity and expression of BIRC6, as well as p53 and Bax expression. Moreover, restoration of BIRC6 reversed the pro-apoptotic effects of miR-204 overexpression in AML cells. Taken together, this study demonstrates that miR-204 causes AML cell apoptosis by targeting BIRC6, suggesting miR-204 may play an anti-carcinogenic role in AML and function as a novel biomarker and therapeutic target for the treatment of this disease.

Cytogenetic and Genetic Mutation Features of de novo Acute Myeloid Leukemia in Elderly Chinese Patients

  • Su, Long;Li, Xian;Gao, Su-Jun;Yu, Ping;Liu, Xiao-Liang;Tan, Ye-Hui;Liu, Ying-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.895-898
    • /
    • 2014
  • Objectives: The present study aimed to examine the cytogenetic and genetic mutation features of acute myeloid leukemia (AML) in elderly Chinese patients. Methods: A retrospective analysis of cytogenetics and genetic mutations was performed in 113 cases (age range 50-82 years) with de novo AML. Results: The most frequent cytogenetic abnormality was t (15;17) (q22;q21), detected in 10.0% (n = 9) of successfully analyzed cases, followed by t (8;21) (q22;q22) in 8.89% (n = 8), and complex karyotypes in 5.56% (n = 5). Those with complex karyotypes included 4 cases (4.44%) of monosomal karyotypes. The frequencies of NPM1, FLT3-ITD, c-kit, and CEBPA mutations were 27.4% (31/113), 14.5% (16/110), 5.88% (6/102), and 23.3% (7/30), respectively. The complete remission rates of patients in low, intermediate, and high risk groups were 37.5%, 48.6%, and 33.3%, respectively (${\chi}^2$ = 0.704, P = 0.703) based on risk stratification. Conclusion: Cytogenetics and genetic mutations alone may not be sufficient to evaluate the prognoses of elderly AML patients. The search for a novel model that would enable a more comprehensive evaluation of this population is therefore imperative.

Secretion and Expression of Matrix Metalloproteinase-2 and 9 from Bone Marrow Mononuclear Cells in Myelodysplastic Syndrome and Acute Myeloid Leukemia

  • Chaudhary, Ajay K;Chaudhary, Shruti;Ghosh, Kanjaksha;Shanmukaiah, Chandrakala;Nadkarni, Anita H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1519-1529
    • /
    • 2016
  • Background: Matrix metalloproteinase -2 (gelatinase-A, Mr 72,000 type IV collagenase, MMP-2) and -9 (gelatinase-B, Mr 92,000 type IV collagenase, MMP-9) are key molecules that play roles in tumor growth, invasion, tissue remodeling, metastasis and stem-cell regulation by digesting extracellular matrix barriers. MMP-2 and -9 are well known to impact on solid cancer susceptibility, whereas, in hematological malignancies, a paucity of data is available to resolve the function of these regulatory molecules in bone marrow mononuclear cells (BM-MNCs) and stromal cells of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Objectives: The present study aimed to investigate mRNA expression and gelatinase A and B secretion from BM-MNCs in vitro and genotypic associations of MMP-2 (-1306 C/T; rs243865), MMP-9 (-1562 C/T; rs3918242), tissue inhibitor of metalloproteinase -1 (TIMP-1) (372T/C; rs4898, Exon 5) and TIMP-2 (-418G/C; rs8179090) in MDS and AML. Results: The study covered cases of confirmed MDS (n=50), AML (n=32) and healthy controls (n=110). MMP-9 mRNA expression revealed 2 fold increased expression in MDS-RAEB II and 2.5 fold in AML M-4 (60-70% blasts). Secretion of gelatinase-B also revealed the MMP-9 mRNA expression and ELISA data also supported these data. We noted that those patients having more blast crises presented with more secretion of MMP-9 and its mRNA expression. In contrast MMP-9 (-1562 C/T) showed significant polymorphic associations in MDS (p<0.02) and AML (p<0.02). MMP-9 mRNA expression of C/T and T/T genotypes were 1.5 and 2.5 fold increased in MDS and AML respectively. In AML, MMP-2 C/T and T/T genotypes showed 2.0 fold mRNA expression. Only MMP-9 (-1306 C/T) showed significant 4 fold (p<0.001) increased risk with chemical and x-ray exposed MDS, while tobacco and cigarette smokers have 3 fold (p<0.04) risk in AML. Conclusions: In view of our results, MMP-9 revealed synergistic secretion and expression in blast crises of MDS and AML with 'gene' polymorphic effects and is significantly associated with increased risk with tobacco, cigarette and environmental exposure. Release and secretion of these enzymes may influence hematopoietic cell behavior and may be important in the clinical point of view. It may offer valuable tools for diagnosis and prognosis, as well as possible targets for the treatments.

Associations of IL-10 Gene Polymorphisms with Acute Myeloid Leukemia in Hunan, China

  • Yao, Chen-Jiao;Du, Wei;Chen, Hai-Bing;Xiao, Sheng;Wang, Cheng-Hong;Fan, Zi-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2439-2442
    • /
    • 2013
  • We investigated the possible association of interleukin-10 (IL-10) single nucleotide polymorphisms (SNPs) and susceptibility to acute myeloid leukemia (AML) in 115 patients and 137 healthy controls. Genetic analysis of IL-10 SNPs at -819 and -592 was carried out with the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach. The IL-10 mRNA expression of AML patients and controls with different genotype was detected by real-time quantitative polymerase chain reaction (RT-PCR). Genetic analysis of IL-10 revealed that the -819AA genotype frequencies and the -819A allele frequencies in the AML group were higher than in the controls (59.1% vs 40.9%; 75.6% vs 63.9%, respectively); there were remarkable differences in -819T/C and -592A/C gene distribution (P<0.05) and the TA haploid frequencies were higher in the AML group (75.6% vs 63.9%, P<0.05). IL-10 mRNA expression in incipient AML patients was obvious higher than the non-tumor group and the remission group ($7.78{\times}10^{-3}$ vs $2.43{\times}10^{-3}$, $3.64{\times}10^{-3}$, P<0.05).The study suggested that the haploid TA and genotype TA/TA may be associated with AML in Han people in Hunan province.The IL-10 SNPs at -819 and -592 sites were associated with AML and may affect IL-10 mRNA expression in AML patients.

Deletion of GSTM1 and T1 Genes as a Risk Factor for Development of Acute Leukemia

  • Dunna, Nageswara Rao;Vure, Sugunakar;Sailaja, K.;Surekha, D.;Raghunadharao, D.;Rajappa, Senthil;Vishnupriya, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2221-2224
    • /
    • 2013
  • The glutathione S-transferases (GSTs) are a family of enzymes involved in the detoxification of a wide range of chemicals, including important environmental carcinogens, as well as chemotherapeutic agents. In the present study 294 acute leukemia cases, comprising 152 of acute lymphocytic leukemia (ALL) and 142 of acute myeloid leukemia, and 251 control samples were analyzed for GSTM1 and GSTT1 polymorphisms through multiplex PCR methods. Significantly increased frequencies of GSTM1 null genotype (M0), GSTT1 null genotype (T0) and GST double null genotype (T0M0) were observed in the both ALL and AML cases as compared to controls. When data were analyzed with respect to clinical variables, increased mean levels of WBC, Blast %, LDH and significant reduction in DFS were observed in both ALL and AML cases with T0 genotype. In conclusion, absence of both GST M & GST T might confer increased risk of developing ALL or AML. The absence of GST enzyme might lead to oxidative stress and subsequent DNA damage resulting in genomic instability, a hallmark of acute leukemia. The GST enzyme deficiency might also exert impact on clinical prognosis leading to poorer DFS. Hence GST genotyping can be made mandatory in management of acute leukemia so that more aggressive therapy such as allogenic stem cell transplantation may be planned in the case of patients with a null genotype.

Relation of BAALC and ERG Gene Expression with Overall Survival in Acute Myeloid Leukemia Cases

  • Rashed, Reham A;Kadry, Dalia Y;Taweel, Maha EL;Abd El Wahab, Nahed;Abd El Hameed, Thoreya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7875-7882
    • /
    • 2015
  • Background: The objectives of this study were to evaluate the expression of brain and acute leukemia, cytoplasmic (BAALC) gene and erythroblast transformation-specific related gene (ERG) in de novo cases of acute myeloid leukemia (AML) and identify roles in disease progression and outcome. Materials and Methods: This study included 50 newly diagnosed AML patients, along with 10 apparently healthy normal controls. BAALC and ERG expression was detected in the bone marrow of both patients and controls using real-time RT-PCR. Results: BAALC and ERG expression was detected in 52% of cases but not in any controls. There was a statistically significant correlation between BAALC and ERG gene expression and age (p-value=0.004 and 0.019, respectively). No statistical significance was noted for sex, lymphadenopathy, hepatomegaly, splenomegaly, other hematological findings, immunophenotyping and FAB sub-classification except for ERG gene and FAB (p-value=0.058). A statistical significant correlation was found between response to treatment with ERG expression (p-value=0.028) and age (p-value=0.014). A statistically significant variation in overall survival was evident with patient age, BM blast cells, FAB subgroups, BAALC and ERG expression (p-value=<0.001, 0.045, 0.041, <0.008 and 0.025 respectively). Conclusions: Our results suggest that BAALC and ERG genes are specific significant molecular markers in AML disease progression, response to treatment and survival.

Prognostic Factors and Survival in Acute Myeloid Leukemia Cases: a Report from the Northeast of Iran

  • Allahyari, Abolghasem;Tajeri, Tarane;Sadeghi, Masoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1547-1551
    • /
    • 2016
  • Background: Acute myeloid leukemia (AML) is a clonal hematopoietic disorder resulting from genetic alterations in normal hematopoietic stem cells. The aim of this study was to evaluate prognostic factors and survival of AML patients in the Northeast of Iran. Materials and Methods: This retrospective study covered 96 patients with AML referred to Emam Reza Hospital, Mashhad city, Iran, from 2009 to 2015. Age, sex, blood group, type of AML, fever, consumption of amphotericin B, cytogenetic forms and survival were analyzed. Also, WBC, hemoglobin and platelet levels were checked. Mean follow-up was 30.5 months (60.4% mortality). Survival was plotted by GraphPad Prism 5 with Log-rank test. Results: The mean age for all AML patients at diagnosis was 40.4 years (range, 17-77 years). Some 42.7% patients were aged <35 years and 40.6% were male. In all patients, 76% had fever and 50% consumed amphotericin. T(15;17)(q22;q21) had the most prevalence (37.7%) compared to other forms. Out of 92 patients, O+(30.4%) was the most common blood group and AML-M5 (28.3%) the most common subtype. There was a significant difference in survival based on WBC and consumption of amphotericin B (P<0.05). Conclusions: WBC level, fever and consumption of amphotericin B proved to be factors for survival of AML patients. The mean age for patients in Iran is lower than other areas in the World and also survival in this study was higher than in other studies.

Classification of Leukemia Disease in Peripheral Blood Cell Images Using Convolutional Neural Network

  • Tran, Thanh;Park, Jin-Hyuk;Kwon, Oh-Heum;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.10
    • /
    • pp.1150-1161
    • /
    • 2018
  • Classification is widely used in medical images to categorize patients and non-patients. However, conventional classification requires a complex procedure, including some rigid steps such as pre-processing, segmentation, feature extraction, detection, and classification. In this paper, we propose a novel convolutional neural network (CNN), called LeukemiaNet, to specifically classify two different types of leukemia, including acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), and non-cancerous patients. To extend the limited dataset, a PCA color augmentation process is utilized before images are input into the LeukemiaNet. This augmentation method enhances the accuracy of our proposed CNN architecture from 96.9% to 97.2% for distinguishing ALL, AML, and normal cell images.

Clinical Impact of Overexpression of FOXP3 and WT1 on Disease Outcome in Egyptian Acute Myeloid Leukemia Patients

  • Assem, Magda M;Osman, Ahmed;Kandeel, Eman Z;Elshimy, Reham AA;Nassar, Hanan R;Ali, Radwa E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.10
    • /
    • pp.4699-4711
    • /
    • 2016
  • Background: In the last decade, it has become clear that change of gene expression may alter the hematopoietic cell quiescent state and consequently play a major role in leukemogenesis. WT1 is known to be a player in acute myeloid leukemia (AML) and FOXP3 has a crucial role in regulating the immune response. Objectives: To evaluate the impact of overexpression of WT1and FOXP3 genes on clinical course in adult and pediatric AML patients in Egypt. Patients and methods: Bone marrow and peripheral blood samples were obtained from 97 de novo non M3 AML patients (63 adult and 34 pediatric). Real-time quantitative PCR was used to detect overexpression WT1 and FOXP3 genes. Patient follow up ranged from 0.2 to 39.0 months with a median of 5 months. Results: In the pediatric group; WT1 was significantly expressed with a high total leukocyte count median 50X109/L (p=0.018). In the adult group, WT1 had an adverse impact on complete remission induction, disease-free survival and overall survival (p=0.02, p=0.035, p=0.019 respectively). FOXP3 overexpression was associated with FAB subtypes AML M0 +M1 vs. M2, M4+M5 (p =0.039) and the presence of hepatomegaly (p=0.005). Conclusions: WT1 and FOXP3 overexpression has an adverse impact on clinical presentation, treatment response and survival of pediatric and adult Egyptian AML patients.

Effects of Somatic Mutations Are Associated with SNP in the Progression of Individual Acute Myeloid Leukemia Patient: The Two-Hit Theory Explains Inherited Predisposition to Pathogenesis

  • Park, Soyoung;Koh, Youngil;Yoon, Sung-Soo
    • Genomics & Informatics
    • /
    • v.11 no.1
    • /
    • pp.34-37
    • /
    • 2013
  • This study evaluated the effects of somatic mutations and single nucleotide polymorphisms (SNPs) on disease progression and tried to verify the two-hit theory in cancer pathogenesis. To address this issue, SNP analysis was performed using the UCSC hg19 program in 10 acute myeloid leukemia patients (samples, G1 to G10), and somatic mutations were identified in the same tumor sample using SomaticSniper and VarScan2. SNPs in KRAS were detected in 4 out of 10 different individuals, and those of DNMT3A were detected in 5 of the same patient cohort. In 2 patients, both KRAS and DNMT3A were detected simultaneously. A somatic mutation in IDH2 was detected in these 2 patients. One of the patients had an additional mutation in FLT3, while the other patient had an NPM1 mutation. The patient with an FLT3 mutation relapsed shortly after attaining remission, while the other patient with the NPM1 mutation did not suffer a relapse. Our results indicate that SNPs with additional somatic mutations affect the prognosis of AML.