• Title/Summary/Keyword: Actuator nonlinearities

Search Result 22, Processing Time 0.034 seconds

Force control of an asymmetric hydraulic cylinder for active suspensions

  • Kim, Wanil;Lee, Byung-Youn;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1124-1127
    • /
    • 1996
  • Asymmetric cylinders are usually used as an actuator of active suspensions. Since the force is influenced not only by the control but by the road roughness, force control is needed to track the desired force. But the conventional error feedback control treats the valve-cylinder dynamics at its operating point and many use the symmetric model which differ in all respects. We adopt an asymmetric cylinder model and apply a feedback linearization method for the force control to compensate both the valve nonlinearities and the effects of the road roughness.

  • PDF

Nonlinear Hydraulic System Control Using Fuzzy PID Control Technique (퍼지 PID 제어 기법을 이용한 비선형 유압시스템의 제어)

  • 박장호;김종화;류기석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.69-69
    • /
    • 2000
  • Control systems using a hydraulic cylinder as an actuator are modeled to a nonlinear system owing to varying of moments and nonlinearities of hydraulic itself. In this paper, we want to control nonlinear hydraulic systems by adopting the fuzzy PID control technique which include nonlinear time varying control parameters. To do this, we propose the design method of fuzzy Pm controller and in order to assure effectiveness of fuzzy PID controller, computer simulations were executed for the control system.

  • PDF

An Adaptive Control Approach for Improving Control Systems with Unknown Backlash

  • Han, Kwang-Ho;Koh, Gi-Ok;Sung, Jae-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.360-364
    • /
    • 2011
  • Backlash is common in mechanical and hydraulic systems and severely limits overall system performance. In this paper, the development of an adaptive control scheme for systems with unknown backlash is presented. An adaptive backlash inverse based controller is applied to a plant that has an unknown backlash in its input. The harmful effects of backlash are presented. Compensation for backlash by adding a discrete adaptive backlash inverse structure and the gradient-type adaptive algorithm, which provides the estimated backlash parameters, are also presented. The supposed adaptive backlash control algorithms are applied to an aircraft with unknown backlash in the actuator of control surfaces. Simulation results show that the proposed compensation scheme improves the tracking performance of systems with backlash.

Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators

  • Song, Gangbing;Ma, Ning;Li, Luyu;Penney, Nick;Barr, Todd;Lee, Ho-Jun;Arnold, Steve
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • It has been shown in the literature that active adjustment of the intake area of a jet engine has potential to improve its fuel efficiency. This paper presents the design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators. The Nitinol SMA material is used in this research due to its advantages of high power-to-weight ratio and electrical resistive actuation. The Nitinol SMA material can be fabricated into a variety of shapes, such as strips, foils, rods and wires. In this paper, SMA wires are used due to its ability to generate a large strain: up to 6% for repeated operations. The proposed proof-of-concept engine intake employs overlapping leaves in a concentric configuration. Each leaf is mounted on a supporting bar than can rotate. The supporting bars are actuated by an SMA wire actuator in a ring configuration. Electrical resistive heating is used to actuate the SMA wire actuator and rotate the supporting bars. To enable feedback control, a laser range sensor is used to detect the movement of a leaf and therefore the radius of the intake area. Due to the hysteresis, an inherent nonlinear phenomenon associated with SMAs, a nonlinear robust controller is used to control the SMA actuators. The control design uses the sliding-mode approach and can compensate the nonlinearities associated with the SMA actuator. A proof-of-concept model is fabricated and its feedback control experiments show that the intake area can be precisely controlled using the SMA wire actuator and has the ability to reduce the area up to 25%. The experiments demonstrate the feasibility of engine intake area control using an SMA wire actuator under the proposed design.

Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators with Magneto-Rheological Brake

  • Thanh, Tu Diep Cong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1983-1989
    • /
    • 2005
  • Industrial robots are powerful, extremely accurate multi-jointed systems, but they are heavy and highly rigid because of their mechanical structure and motorization. Therefore, sharing the robot working space with its environment is problematic. A novel pneumatic artificial muscle actuator (PAM actuator) has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. Its main advantages are high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. The PAM is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as Rubber Actuator and PAM manipulators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot To overcome these problems a novel controller, which harmonizes a phase plane switching control method with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper - Magneto-Rheological Brake (MRB) is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control using neural network brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control using neural network and without regard for the changes of external inertia loads.

  • PDF

Development of a Simulation Tool of a Two-Axis Nano Stage for a New Generation Lithography System (차세대 리소그라피 시스템을 위한 2축 나노스테이지의 시뮬레이션 툴 구축)

  • Yoo Gunmo;Jung Jongchul;Chung Chung Choo;Huh Kunsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1541-1548
    • /
    • 2004
  • A nano-stage simulation tool is developed for an advanced E-beam lithography system. Even if piezo-actuators are believed to be compatible fer the E-beam lithograpy system it is difficult to predict their characteristics due to their nonlinearities such as hysteresis and creep. In this paper, the nonlinear properties are modeled for a piezo-actuator by considering the voltage range and speed variations. The hysteresis is described as the first order differential equation with 24 sets of parameters and the creep is modeled as a time-dependent logarithmic function with 2 sets of a parameter. A two-axis nano stage with piezo-actuators are investigated for realizing nano scale motions. The characteristics of flexure guide mechanisms are analyzed based on the finite element method using the ANSYS software. The simulation tool for the nano stage is constructed by using the RecurDyn software. The dynamic response of the nano stage is obtained in simulations and compared with the experimental data.

Track-Following Control of a Hard Disk Drive Actuator Using Nonlinear Robust Deterministic Control (비선형 견실 확정제어를 이용한 하드디스크 드라이브의 트랙추종제)

  • Wie, Byung-Yeol;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.881-887
    • /
    • 2000
  • There are significant nonlinearities and uncertainties in hard disk drive actuators. In particular, pivot bearing nonlinearity and repeatable run-out make track-following control difficult as track density increases. In this paper, we design a robust track-following controller using a robust deterministic control scheme in which the pivot bearing nonlinearity and repeatable run-out are considered as uncertainties. Simulation study is conducted to evaluate the control performance of the proposed control scheme.

  • PDF

Two-Stage Sliding Mode Controller for Bending Mode Suppression of a Flexible Pointing System (유연성 포인팅 시스템의 진동모드 보상을 위한 2단계 슬라이딩 모드 제어기)

  • 박장현;김경완;이교일;김학성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.971-976
    • /
    • 1996
  • A flexible pointing system mounted on top of a vehicle suffers from performance degradation due to bending vibrations as the vehicle runs on a bump course. In order to improve the pointing performance, the pointing structure's vibrations should be suppressed. In this paper, a nonlinear controller is designed to control the tip position of the pointing system while actively suppressing the vibrations. To cope with high order dynamics and nonlinearities of the plant and hydraulic actuating system, a two-stage sliding mode controller is devised. The desired actuating pressure is obtained in the first stage and then the in put current In the hydraulic servo system is computed to generate the pressure. The simulation results show the effectiveness of this scheme and improvements in pointing accuracy.

  • PDF

Vibration control of 3D irregular buildings by using developed neuro-controller strategy

  • Bigdeli, Yasser;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.687-703
    • /
    • 2014
  • This paper develops a new nonlinear model for active control of three-dimensional (3D) irregular building structures. Both geometrical and material nonlinearities with a neuro-controller training algorithm are applied to a multi-degree-of-freedom 3D system. Two dynamic assembling motions are considered simultaneously in the control model such as coupling between torsional and lateral responses of the structure and interaction between the structural system and the actuators. The proposed control system and training algorithm of the structural system are evaluated by simulating the responses of the structure under the El-Centro 1940 earthquake excitation. In the numerical example, the 3D three-story structure with linear and nonlinear stiffness is controlled by a trained neural network. The actuator dynamics, control time delay and incident angle of earthquake are also considered in the simulation. Results show that the proposed control algorithm for 3D buildings is effective in structural control.

Bridge flutter control using eccentric rotational actuators

  • Korlin, R.;Starossek, U.
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.323-340
    • /
    • 2013
  • An active mass damper system for flutter control of bridges is presented. Flutter stability of bridge structures is improved with the help of eccentric rotational actuators (ERA). By using a bridge girder model that moves in two degrees of freedom and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. In order to take structural nonlinearities into consideration, flutter analysis is carried out by numerical simulation scheme based on a 4th-order Runge-Kutta algorithm. An example demonstrates the performance and efficiency of the proposed device. In comparison with known active mass dampers for flutter control, the movable eccentric mass damper and the rotational mass damper, the power demand is significantly reduced. This is of advantage for an implementation of the proposed device in real bridge girders. A preliminary design of a realization of ERA in a bridge girder is presented.