• Title/Summary/Keyword: Actuator analysis

Search Result 1,072, Processing Time 0.033 seconds

Evaluation and Analysis of Dynamic Characteristics in Tilt Actuator for High Density Optical Storage Devices (고밀도 광저장 기기용 틸트 액추에이터 동특성 분석 및 평가)

  • 김석중;이용훈;최한국
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.584-595
    • /
    • 2000
  • We design a new actuator for high density optical device in order to control the radial tilting motion. The newly designed actuator makes it possible to control the tilting motion actively, while the coventional actuator compress tilting motion with passive spring. First of all, We present 3-dimensional modeling of actuator and accomplish the modal analysis and magnetic analysis of actuator. Due to these results, a new designed actuator has performance of high sensitivity and high second resonance frequency. Secondly, We present the 3-DOF dynamic modeling of the 4-wire spring type actuator. sensitivity analysis is performed to consider the assembling error, such as the difference of mass center and force center. From these results, the sensitivities of rotation due to the assembly error are revealed and design criteria of rotation is presented. And experimental results of a newly designed actuator are presented and compared with theoretical results. Finally, We propose a dynamic tilt compensation and high acceleration actuator for high density optical storage devices.

  • PDF

A Study on Dynamic Characteristics of a Precise Actuator for the High Density Optical Recording Pick-Up (고밀도 기록용 광픽업의 정밀 액추에이터 동특성 연구)

  • 김석중;이용훈;손용기;이철우;임경우
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.87-98
    • /
    • 1998
  • A Precise actuator in the pick-up of a DVDR/P(Digital Video Disk Recorder/Player) is required to control position accurately. Therefore, in order to develop a reliable actuator, dynamic characteristics of each part in an actuator should be examined closely. This paper presents systematic design process of an actuator using various analysis methods to confirm fundamental capability and solve performance problems related to dynamic characteristics of an actuator beforehand. Particularly, sensitivity analysis is presented through the program using mass moment of inertia and general equations of rigid body. Through the result of sensitivity analysis, important inferiority causes of actuator are selected and reduced. In the end, dynamic characteristics of manufactured actuators are improved considerably.

  • PDF

Design and Analysis of Electromagnetic Tubular Linear Actuator for Higher Performance of Active Accelerate Pedal

  • Lee, Jae-Yong;Kim, Jin-Ho;Lee, Jeh-Won
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.175-180
    • /
    • 2009
  • This paper describes the design and analysis of a tubular linear actuator for intelligent AAP (Active Accelerate Pedal) system. In a driving emergency, the electromagnetic actuator produces an additional pedal force such as the active pedal force and vibration force to release the driver's foot on accelerator pedal. A prior study found that the linear actuator with a ferromagnetic core had a problem in transferring the additional force naturally to a driver due to the cogging force. To reduce the cogging force and obtain higher performance of the AAP system, a coreless tubular linear actuator is suggested. Electromagnetic finite element analysis is executed to analyze and design the coreless tubular actuator, and dynamic analysis is performed to characterize the dynamic performance of the AAP system with the suggested tubular actuator for two types of thrust force.

Position Control of Laser Scanning Mirror Using Piezoelectric Actuator (압전작동기를 이용한 레이져 스케닝 미러의 위치제어)

  • 지학래;김재환;최승복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.442-445
    • /
    • 1995
  • This paper presents the position tracking control of a laser scanning mirror system in which piezoelectic actuator is incorporated. Using the shear mode of the piezoelectric actuator,angular oscillation of a laser scanning mirror is derived. Torsion bar is rhen designed and attached to the piezoelctric actuator in order to magnify the amplitude generated by the actuator. Finite element modeling and analysis are essntial for designing the piezoelectic actuator. The torsional resonance mode of the piezoelectric actuator is found from the model analysis of the actuator and the mechanical shear is matched with the driving frequency. Transfer function between the electrical excitation and the mechanical shear deformation at resonance frequency is found form the response of the actuator calculated by the finite element analysis and the governing equation of the system is derived from d'Alembert's principle. Tracking control performance for desired trajectory which is, in fact, sinusoidal curve is presented in order to demonstrate the validity of the proposed system.

  • PDF

Dynamic Analysis of a Tilting Actuator for a Projection TV (프로젝션 TV용 틸팅 액추에이터의 동특성 해석)

  • Im, Hyung-Bin;Park, Chul-Jun;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.192-198
    • /
    • 2008
  • A dynamic analysis of a tilting actuator for a projection TV is presented in this study. Severe vibration of a tilting actuator deteriorates the video quality of a projection TV. For this reason, a dynamic analysis of the tilting actuator system is essential to improve the video quality. The dynamic behaviors of the mirror reactive-type tilting actuator are examined in order to obtain design requirements of the lens transmissive-type tilting actuator. Based on these design requirements, a basic design is performed for the lens transmissive-type tilting actuator. With the basic design, the dynamic characteristics of the lens transmissive-type actuator are investigated by the finite element analysis After the prototype of the actuator is manufactured, the dynamic behaviors of the prototype are examined by experiments. As a result of this study, a new design for the hinge configuration of the actuator is suggested for better performance.

Design of a Moving-magnet Electromagnetic Actuator for Fast Steering Mirror through Finite Element Simulation Method

  • Long, Yongjun;Mo, Jinqiu;Wei, Xiaohui;Wang, Chunlei;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.300-308
    • /
    • 2014
  • This paper develops a moving-magnet electromagnetic actuator for fast steering mirror (FSM). The actuator achieves a reasonable compromise between voice coil actuator and piezoelectric actuator. The stroke of the actuator is between the strokes of a piezoelectric actuator and a voice coil actuator, and its force output is a linear function of air gap and excitation current within our FSM travel range. Additionally, the actuator is more reliable than voice coil actuator as the electrical connection in the actuator is static. Analytically modeling the actuator is difficult and time-consuming. Alternatively, numerous finite element simulations are carried out for the actuator analysis and design. According to the design results, a real prototype of the actuator is fabricated. An experimental test system is then built. Using the test system, the force output of the fabricated actuator is evaluated. The test results validate the actuator analysis and design.

Design and Analysis of a Tilting Actuator for a Projection TV (프로젝션 TV 용 틸팅 액츄에이터의 설계 및 분석)

  • Im, Hyung-Bin;Park, Chul-Jun;Park, Jong-Yong;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.743-748
    • /
    • 2007
  • This paper describes a lens transmissive type tilting actuator for a projection TV. An electromagnetic analysis and a structural analysis of the tilting actuator system is necessary to design a tilting actuator for a projection TV. The tilting actuator is composed a permanent magnet, coil and yoke as the electromagnetic components and it needs a driving hinge part as the mechanical component. The design of the tilting actuator for the projection TV is performed by the following procedure. Firstly, a magnetic flux density of the tilting actuator system is analyzed by a mathematical theory and an electromagnetic FEM. Secondary, a magnetic circuit method is used to determine tilting force. Thirdly, the structural FEM is carried out with an FE model of a lens-transmissive type tilting actuator and then the prototype of the model is manufactured. The characteristic of the prototype is experimentally observed. Finally, a design for a new hinge configuration is suggested for better performance.

  • PDF

Forced Vibration Analysis of 4 DOF system for Design of Slip-Stick Actuator (슬립-스틱 구동기 설계를 위한 4자유도 시스템 강제진동 해석)

  • Song, Myeong-Gyu;Hur, Young-Jun;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su;Lim, Soo-Cheol;Park, Jae-Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.214-215
    • /
    • 2009
  • The friction is inevitable and unpredictable phenomena, so most mechanical systems are designed to low friction effect by using bearings and lubricants. However, the slip-stick actuator applies the friction force to its movement. The slip-stick mechanism is applied the piezoelectric actuator to overcome short displacement. Fast response of piezoelectric actuator is also good characteristic for the slip-stick mechanism. However, the piezoelectric actuator with slip-stick mechanism isn't common, because its cost and driving voltage are too high. In this paper, a voice-coil actuator with slip-stick mechanism is introduced. The cost and the driving voltage of a voice-coil actuator are much less than the piezoelectric actuator. And a dynamic vibration amplifier is proposed to adjust the dynamic performance of the actuator. By the results of numerical analysis, the feasibility of a dynamic vibration amplifier is verified.

  • PDF

Design and Analysis of A Mini Linear Optical Pickup Actuator

  • Park, Joon-Hyuk;Baek, Yoon-Su;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1616-1627
    • /
    • 2003
  • This paper describes a mini linear optical pickup actuator. To reduce the size, inner yokes are designed to guide the mover and outer yokes of permanent magnets are removed. Magnetic circuit method is used to determine the thrust force. Virtual path method is proposed to analyze the open magnetic circuit analysis. The magnetic circuit of the proposed actuator can be a closed circuit due to the virtual path model of the outer magnetic flux. The validity of virtual path method is evaluated by comparing to the FEM analysis. Structural vibration is investigated using FEM and the design of the mover is modified to improve the vibration characteristic. Dynamic characteristic experiments shows that the performance of the proposed actuator is enough to be used as a coarse and fine seeking actuator simultaneously and the thrust force margin for loading a focusing actuator is guaranteed.

Analysis of lever actuator for the optical disk (광 픽업용 레버 구동기의 해석)

  • 한창수;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.618-621
    • /
    • 2001
  • The proposed lever actuator has no friction and mass balance characteristics in motion, which are adapt to high-speed and high-density optical disk system. This paper discussed about the theoretical analysis of the lever structure. The modeling of the lever actuator is found. Using the Newton's method, the motion of equation is deduced through the constraint equations and equilibrium equations in three directions (focusing, tracking and tilting). From the above analysis, we know that the shape of the hinge is the very important parameter on determining the performance of the lever actuator, and the actuator has the 2nd order system characteristics. And the first resonant frequency in transmissibility is dependent to the rigidity of the lever while the first transmissibility resonance of conventional actuators is dependent to the first natural resonance of those actuators. This means that the lever actuator is more stable to the external vibration.

  • PDF